• Title/Summary/Keyword: Bang-Bang Control

Search Result 1,146, Processing Time 0.026 seconds

OPTIMAL PARAMETERS FOR A DAMPED SINE-GORDON EQUATION

  • Ha, Jun-Hong;Gutman, Semion
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.1105-1117
    • /
    • 2009
  • In this paper a parameter identification problem for a damped sine-Gordon equation is studied from the theoretical and numerical perspectives. A spectral method is developed for the solution of the state and the adjoint equations. The Powell's minimization method is used for the numerical parameter identification. The necessary conditions for the optimization problem are shown to yield the bang-bang control law. Numerical results are discussed and the applicability of the necessary conditions is examined.

Maneuvering and Active Vibration Control of Slewing Flexible Beam using Input Shaper (입력성형기를 이용한 회전 유연보의 조종 및 진동제어)

  • Kwak, Moon-K.;Yang, Dong-Ho;Lee, Jae-Ha
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.701-706
    • /
    • 2012
  • This research is concerned with the derivation of equations of motion for a slewing beam and the application of input shaper to the bang-bang control to achieve vibration suppression. When a uniform beam with a tip mass rotates about the axis perpendicular to the undeformed beam's longitudinal axis, it experiences inertial loading. Hence, the beam vibrates. In this paper, we used the input shaper for the maneuvering control to suppress vibrations. The maneuvering control which can achieve a minimum-time control is a bang-bang control. The input-shaped bang-bang maneuvering is used to suppress vibrations both theoretically and experimentally. The slewing beam experiment is not an easy subject because of the inherent damping existing inside the rotor. We propose the use of a negative damping to eliminate the rotor damping. Numerical and experimental results show that the input-shaper can be effectively used for the vibration suppression of a slewing beam.

  • PDF

Maneuvering and Active Vibration Control of Slewing Flexible Beam Using Input Shaper (입력성형기를 이용한 회전 유연보의 조종 및 진동제어)

  • Kwak, Moon-K.;Yang, Dong-Ho;Lee, Jae-Ha
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.6
    • /
    • pp.542-549
    • /
    • 2012
  • This research is concerned with the derivation of equations of motion for a slewing beam and the application of input shaper to the bang-bang control to achieve vibration suppression. When a uniform beam with a tip mass rotates about the axis perpendicular to the undeformed beam's longitudinal axis, it experiences inertial loading. Hence, the beam vibrates. In this paper, we used the input shaper for the maneuvering control to suppress vibrations. The maneuvering control which can achieve a minimum-time control is a bang-bang control. The input-shaped bang-bang maneuvering is used to suppress vibrations both theoretically and experimentally. The slewing beam experiment is not an easy subject because of the inherent damping existing inside the rotor. We propose the use of a negative damping to eliminate the rotor damping. Numerical and experimental results show that the input-shaper can be effectively used for the vibration suppression of a slewing beam.

TIME-OPTIMAL BANG-BANG TRAJECTORIES USING BIFURCATION RESULT

  • Shin, Chang-Eon
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.553-567
    • /
    • 1997
  • This paper is concerned with the control problem $$ \dot{x}(t) = F(x) + u(t)G(x), t \in [0,T], x(0) = 0, $$ where F and G are smooth vector fields on $R^n$, and the admissible controls u satisfy the constraint $$\mid$u(t)$\mid$ \leq 1$. We provide the sufficient condition that the bang-bang trajectories having different switching orders intersect.

  • PDF

Nonlinear variable structure system control for flexible link robot manipulators (유연성 로봇 매니퓰레이터에 대한 비선형 가변구조제어)

  • 김성태;임규만;함운철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.280-284
    • /
    • 1997
  • In this paper, Nonlinear VSS control based on bang-bang control concept is derived under the assumption that the control input is bounded. We try to derive control algorithm which has almost same performance as the time optimal control. We focus this control scheme on the real implementation of DC motor position controller of flexible link, i.e. we obtain the switching curves from the real data of DC motor system operating under the full maximum and minimum applied voltages. State space is separated into several regions and we set different switching surfaces in each region to reduce chattering problem. The efficiency of the proposed controller is compared with PID controller and it is shown that the controller converges fast than PID controller without chattering. The hybrid controller scheme is also proposed not only to control the position of hub but also to reduce the vibration of end tip of flexible link.

  • PDF

A path planning of free flying object and its application to the control of gymnastic robot

  • Nam, Taek-Kun;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.526-534
    • /
    • 2003
  • Motions of animals and gymnasts in the air as well as free flying space robots without thruster are subject to nonholonomic constraints generated by the law of conservation of angular momentum. The interest in nonholonomic control problems is motivated by the fact that such systems can not stabilized to its equilibrium points by the smooth control input. The purpose of this paper is to derive analytical posture control laws for free flying objects in the air. We propose a control method using bang-bang control for trajectory planning of a 3 link mechanical system with initial angular momentum. We reduce the DOF (degrees of freedom) of control object in the first control phase and determine the control inputs to steer the reduced order system from its initial position to its desired position. Computer simulation for a motion planning of an athlete approximated by 3 link is presented to illustrate the effectiveness of the Proposed control scheme.

The Enlarged Sorting Algorithm of Tri - Point Comparsion Method for Bang - Bang Optimal Control (Bang - Bang 최적제어(最適制御)에 대한 3 점비교(点比校) 색출법(索出法)의 확장 알고리즘)

  • Kim, Joo-Hong;Jeong, In-Guk;Oh, Jun-Nam;Kim, Jin-Wan;Gho, Han-Jun
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.64-67
    • /
    • 1988
  • This paper proposes a algorithm to obtain a time-varing system parameters for the optimal controller. The proposed algorithm is enlarged from tile optimal sorting algorithm. It applies to Bang-Bang control and compares with CGD Method. We confirm that the proposed algorithm is excellent.

  • PDF

Design and Stability Test of a HDD Hybrid Controller Using Sliding-Mode Control (슬라이딩 모드 제어를 이용한 HDD 하이브리드 제어기 설계 및 안정성 평가)

  • Byun Ji-Young;Kwak Sung-Woo;You Kwan-Ho
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.10
    • /
    • pp.671-677
    • /
    • 2004
  • This paper presents the design of a now controller for the read/write head of a hard disk drive. The general controller for seeking is the time-optimal control. However if we use only the time optimal control law, this could be vulnerable to chattering effect. To solve this problem, we propose a modified controller design algorithm in this paper. The proposed controller consists of bang-bang control for seeking and sliding-mode control for tracking. Moreover, to test the robustness and stability of control system, a bounded disturbance is selected to maximize a severity index. Simulation results show the superiority of the proposed controller through comparison with time optimal VSC(variable structure control).

Sway Control of c Container Crane (Part II): Regulation of the Pendulum Sway through Patternizing Trolley Moving Velocity (컨테이너 크레인의 흔들림 제어 (Part II): 트롤리 주행속도 조절을 통한 진자운동의 제어)

  • Hong, Keum-Shik;Sohn, Sung-Chull;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.2
    • /
    • pp.132-138
    • /
    • 1997
  • Six different types of velocity profiles of trolley movement of a container crane are investigated for the minimal sway angle at the target trolley position. Three velocity patterns which include trapezoidal, stepped and notched-type velocity patterns are obtained assuming constant rope length. The notched type velocity pattern is shown to be derived from the time-optimal bang-bang control. The stepped type velocity pattern can be shown to be derived as bang-off bang control as well. Considering the damping effect due to hoist motion a double stage acceleration pattern is also analyzed. The main objective of the paper is to show how much time-reduction can be obtained among several velocity patterns appearing in the literature.

  • PDF

Path Planning of a Free Flying Object and its Application for Gymnastic Robots

  • Nam Taek-Kun;Kim Yong-Joo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.1
    • /
    • pp.63-69
    • /
    • 2005
  • The motion of animals and gymnasts in the air as well as free flying space robots without thrusters are subjected to nonholonomic constraints generated by the law of conservation of angular momentum. The purpose of this paper is to derive analytical posture control laws for free flying objects in the air. We propose the bang-bang control method for trajectory planning of a 3 link mechanical system with initial angular momentum. This technique is used to reduce the DOF (degrees of freedom) at first switching phase and to determine the control inputs to steer the reduced order system to the desired position. Computer simulations for motion planning of an athlete approximated by 3 link, namely platform diving, are provided to verify the effectiveness of the proposed control scheme.