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Path Planning of a Free Flying Object and its Application for
Gymnastic Robots

Taek-Kun Nam' and Yong-Joo Kim*

Abstract - The motion of animals and gymnasts in the air as well as free flying space robots without
thrusters are subjected to nonholonomic constraints generated by the law of conservation of angular
momentum. The purpose of this paper is to derive analytical posture control laws for free flying
objects in the air. We propose the bang-bang control method for trajectory planning of a 3 link
mechanical system with initial angular momentum. This technique is used to reduce the DOF (degrees
of freedom) at first switching phase and to determine the control inputs to steer the reduced order
system to the desired position. Computer simulations for motion planning of an athlete approximated
by 3 link, namely platform diving, are provided to verify the effectiveness of the proposed control

scheme.
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1. Introduction

Various motions carried out by an athlete in action while
performing such feats as platform diving, horizontal bar,
horse vault, and floor exercises are subject to
nonholonomic constraints generated by the law of
conservation of angular momentum. The nonholonomic
system can be derived from the constraints that are not
integral such as the law of conservation of angular
momentum for the underactuated system. In particular,
athlete’s performances also include rotations in midair
known as somersaults or flips. The initial angular
momentum that athletes acquire in the pre-flight phase
remains constant after he or she takes off from the ground
and is transferred to their rotation axis. In other words, the
gymnasts will automatically begin to rotate about their
center of gravity. We plan to develop a planar gymnastic
robot and to accomplish the motion of an athlete during the
flight phase. To realize this, we first need to derive the
necessary control laws. The purpose of this paper is to
design a configuration control law for a free flying
gymnast with an initial angular momentum.

Some related works of trajectory planning for
nonholonomic systems with initial angular momentum are
given in [1-3]. Sampei et al. [2] showed that errors in the
system become locally controllable when the reference
trajectory of the body angle is given by a certain first order
function of time, and hence they proposed a linear
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feedback control method to stabilize the closed loop
system. However, there is no guarantee that the error
converges to zero when the control terminal time is finite.
Kamon et al. [3] formulated the configuration control as a
path planning problem and derived the minimum energy
trajectory by the numerical optimization method to
simulate the motion of a 3 dimensional somersault.
Godhavn et al. [1] proposed motion planning for a planar
diver using reaching control and manifold control based on
numerical computation.

However, the solution is not unique since the control
input is generated by a random process. An analytical
solution for motion planning of a 2 DOF free flying object
with drift by time optimal control was derived by Mita [6].

In this paper, we propose a configuration control law for
3 DOF free flying objects with initial angular momentum
using bang-bang control (Sage [7], Mita [6]) with n-1
switching ircorporated where n is the number of general
coordinates. The method reduces the DOF at finite time
t,,0<t, <T(final time), and plans the trajectory from
its initial states to its desired position for the reduced order
system. The computer simulation for motion planning of an
athlete approximated by 3 links, namely platform diving, is
performed to verify the effectiveness of the proposed
control algorithm.

2. Control object and Control problem

2.1 Control object

Here we deal with the configuration control problems of
a 3 link planar gymnastic robot as shown in Fig.1.
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Fig. 1 Planar gymnastic robot composed of revolutive
joints.

The robot is composed of an arm and a leg of lengths /,,
1, , weights m and m,, and moments of inertia J,, J,.

M and J denote a body of weight and moment of inertia,
respectively. The limbs are attached to the body via
revolute joints located in distance r from the center of CG
(center of gravity) of the body. The configuration of the
robot can be described by w,,y,,8 , where y, is the
relative angle between the body and the arm, y,is the

relative angle between the body and the leg, and 8 implies
the absolute angle of the body.

2.2 Control object

Suppose that the robot has a nonzero constant angular
momentum £, that is provided by contact with the floor

before taking off as an initial angular momentum. The
initial angular momentum is given as

Ro= o400 =y + -, = Ty 4~y ()

mg m 0

where a, b, c are functions of i,y ,(See Appendix I for

details). Then the law of conservation of angular
momentum can be derived
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Defining the generalized coordinates as x = (y,,y,,6)" and

the control inputs as u; =/, ,u, =y, , then we have

0 1 0
x=| 0+ 0 1 |u 3)
71 V2 V3

The control dilemma is how to derive a control input that

can drive the system from its initial state x,to its desired
state x, at fixed final time 7 . Defining the error between

the current state value and the desired valueg=x-x, ,

we have
0 1 0
,(q,,9,) a,(4,,9,) @3(4,,9,)
= f(g)+G(qu

where @;,Q,,a, are functions of g (See Appendix. II).

We can see that the control problem became the derivation
of control input to make all error variables to zero.

Godhavn [1] generalized the STLC (Small Time Locally
Controllability) for an affine nonlinear control system with
drift. Applying the control input u = Au, A >0 to (4), and

scaling the time with 7 = A¢ , we then have

dg 1
—=— +G(qu &)
e ACORREICY

Since the drift term is to be compensated by a large control
input, i.e, A/ f =0, the system will be equivalent to a
driftless system, therefore the controllability is guaranteed.
This STLC property is guaranteed for 3 DOF
nonholonomic systems that have 2 control inputs, but is not
generally guaranteed for a 2 DOF nonholonomic system
with one control input [6].

3. Trajectory Control by Reducing Dof

We will design control laws that steer the system (4)
from its initial configuration to the origin. As the first step
in deriving the control law, we consider the control input
that is needed to reduce the order of the system. If an initial

state (g, (0) > q,(0)) lies in Reg.1, i.e. ¢,(0)>|q,(0)] as

shown in Fig.2, we determine the control input
u(t) = (u,, —u,,)" 6

where #,, denotes the maximum control input.
Applying control inputs (6) to (4), trajectories of
q,9,become

a(O)=u,t+4,0)

7
g, (1) =—u,t + q,(0) @
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a1

Fig. 2 Control input to reduce the system order

Here, we define the reducing order surface (ROS I)

ROSI={q,,q, €R|q,(t)=q, ()} ®

The initial states in Reg.1 or Reg.2 will move to the
ROS I by the control input (6). When the states g, and q,

arrive at the ROS 1, g,(¢f) becomes equal to g,(?),

reducing the system to a second order system. We can also
consider control input

u(®)=(-u,, u,)" )

for initial states in Reg.3 (—¢q,(0)<|q,(0)|) or Reg4
( 9,(0)>q,(0)). Applying control inputs (9) to (4), we
have

g, () =-u,t+q,(0),q,(t) =u,t+q,(0) (10)

We see that the states g,,¢q, move to ROS I and the
system becomes a second order system. We will define ¢, ,
the time at which the states satisfy g,(f) =g, (). Since

the reduction of DOF, we now consider the problem of
how to move states q, , g, from their initial states of

reduced order system to the point of origin. The states and
control inputs of the reduced order system, i.e. the system

on the ROS I (7 > ¢, ) are defined as

9, =49, =1],
Uy =u, =u

D

Now the reduced order system equation can be described
as

n=u
4y = a,(q) +(a,(g) + a,(@)u (12)
=a,(m+ B, (mu

In order to steer the states 77,9, to the origin, we will

apply the bang-bang control input. We have to analyze the
trajectories of system (12) subjected to bang-bang input,

eg.u=u, or u=—u,.Considering control input
u=-u (13)
Substituting (13) into (12) gives us

T.] =_um

. (14)
45 = a,(m) - p(mu,,

The body angle gq,, which is the solution of (14) is given

as

q;(D=h(mM+C, (15)

whete ,(7) =~ [ (@,(p)~ A(plu,)dp and € denotes

the integral constant. Equation (14) can be derived from a
differentiation of (15). From (4) we have

rle/Zsinp+Wz/2cosp+I/I{,d

hoD= 0 Wsinp+W,cosp+W, (16)
W B e/ +
2 \/Wsz‘le‘sz \/sz_le_sz
where

Wy ==2ke siny,, +k; siny,,),
W, =2ks cosy,, +k, cosy,,),
W,=myJ, +k +k, +k; +2k; cos(y,, —v,,),

myFy

W, =- +J,+J, +k, +ks +2kg cos(y,, —¥,,)

The function tan~'(-) in (16) has discontinuity at 7 =17 .
Therefore, we need to modify the calculation of

tan "' () as [6]

W, —W2)tan(77/2—k7r)+W1)

JWE-wlE-w,?

The trajectory of A, (7) is shown in Fig. 3.

(17)

krz+tan™'(

Next, we consider control input u =u,, , then we have
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n=u,

. (18)
q; =a,(m+ B (Mu,,
from (12). The solution of g5 is
;) =hy(m+C, (19
where
1
hym)y=—1["(@(p) + B (Pu,)dp
u, 0
/N 22W5 ‘7Wz _ tan'l((W3 - W:z)tangﬂ/z) ‘: 4 )
2 \/Ws -w -y \/W3 W -w,
moFy
and W, = +J,+J, +k, +ks +2kg cos(y,, ~v,,)

Trajectory h,(77) , which is compensated by the
discontinuity is illustrated in Fig. 3.

4

A () ha(m)

Fig. 3 Trajectories of 4,(77) and 4,(n7) .

The trajectories of ¢ calculated from (15) and (19) are

indicated in Fig. 4. The trajectories I leading to the left and
trajectories II leading to the right are obtained by changing
Cl1 in (15) and C2 in (19), respectively.

ds

I \* I
\$—n

tz it te

Fig. 4 Trajectory of g, to 77.

From Fig. 4 we can determine a suitable trajectory from
the initial states to the origin. Suppose that the initial states

n(t,), q;(t;) were located in the fourth quadrant and under
the invariant manifold I, we then have 7(¢,) > 0. In this

case, we apply the control input as u=uwu, until the
trajectory meets a path that leads towards the left. Then the
trajectory leading towards the right direction will intersect
at t=t, with another path that moves from the fourth
quadrant to the origin. The final approach is to switch the
control input to u =—u, ,t, <t<T . Therefore, we can
steer the states of the reduced system from their initial
positions to the origin.

Repeating this procedure, initial states 77(¢,), g, (?,) do
not exist under invariant manifolds I or II, and so we
introduce new initial states as 77(t,),q,(¢,) — 27 . This
provides a solution for the robot body with 27 rotation.

It is shown that the initial states of the reduced order

system can be steered to the origin by one time control
switching, i.e. switching from # =u, to u =-u, or from
u=-u,to u=u,. Now we can compile configuration

control for the gymnastic robot from its initial states to the
origin. If an initial state is located in either of the following

Regl ¢,(0)>|,(0)],4;(0) <0 20)
Reg2 ¢,(0)<|4,(0)}4,(0)<0

then the control input becomes

(um —um)Ta(tOStSt])
u(t)=4(-u, -u,) (4 <r<t) @b
(um um)Ta(tZ <t< T)

For initial states in

Reg.d4  ¢,(0)>]4,(0)1,45(0) <0

the control input becomes

(—u,, um)T,(tOSZStl)
w(ty=4(-u, —u,),(t,<t<t) 23)
(W, u,) (1, <t<T)

Consequently, the gymnastic robot represented by (3) can
be controlled from its initial configuration to its desired
one by the sequence of control input as in (21) and (23)
with twofold control switching.
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4. Switching Time Calculation

In this section we will calculate the switching time
required to steer all states to their origin with twofold

control switching. Let us assume the initial states lie in Reg.

2. From (4) and (21), we can derive

g, (t)y=u,t+q,(0), 4)
q,(t)=-u,t+q,(0)

Since the states in ROS I satisfy g, (f,) =q,(t,), we have

{ = 7,(0)—,(0)
2

m

, 4,(0) > 4,(0) (25)

Applying the second control input u=(-u, u, )y,

t, <t<t,, we then get
g, () =—u, (1, —1,)q,(,) (26)
From (26), we obtain

‘) =umt1+q1(t1)—ql(t2) 27

u,

Finally, applying u =(u,, u,, )y, t, <t<T, wehave

g (D) =u, (T —-1,)+q,(,) (28)

using g, (T") = 0 gives us the final time

t, — t
T=“m zu%(z) . 29)

m

q,(t,) must be known before calculating the switching time
t,, T. )

In order to obtain information for ¢,(z,) , consider the state
trajectory g, (¢), t; <t<T .From (15)and (19) we get

g, =h(mM+C,,t, <t<t,

(30)
q; () =hy (M) +Cy,t, <t<T

We can calculate an integral constant C,; from (30).

G =q;) —h () 3D

Considering g, (T)=h, (17(T')) =0 and (31), we have

g3 (O =h(m+q;(t)—h@m@E)),t <t<t,

3
q;t)=h, (), t, <t<T (32

Both trajectories of (32) should be equal atz =¢,, i.e.

hy (78, )) — by (0(2,)) = —q;5 (1) + h, (n(2,)) (33)

It is difficult to calculate g,(#,), which satisfies (33), by

the analytical method. Here, we used the numerical
integration method to calculate it. Finally, we can derive

n(t,), ie.q,(t,) from(33)
7(ty) = =20, +2tan” (Cy tan(~g5(1,) + b ((2,)))) (34)
where C, is constant calculated from (16) ~ (19).

Wy -W?-W;

= (35)
2(W3 - Wz )(W4 - Ws )

3

Using the information of ¢,(t,) , we can acquire
switching time ¢, , and final time T from (27) and (29),

respectively.

5. Application to Planar Diving
We applied the proposed control scheme to the

configuration control of a planar diver. Simulation results
for a 3 link gymnastic robot with parameters

Py, =70[kg.m* | s],M = 40[kg],m, = 10[kg],m, =1kg],
I, =0.6[m],1, =0.9[m],r = 0.15[m]with u,, =4[/ s]

are shown in Fig. 5.
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A Ly
5

15 [sec] 2
(b)
Fig. 5 Simulation Results
The initial and desired states were x, =(-0.5 0
q,=(-05 0

—37)" and g, =(0 0 0)7, respectively. We can see that

-0.57)" and x, =(0 0 2.57)7 , ie.

the control performance will be one and a half rotations in
midair, The switching times were determined as
t, =0.0625[s],t, =0.9628[s],T =1.9256[s]. Fig. 5 (a) and
Fig. 5 (b) depict the time evolution of the state and the
control input, respectively. We can observe that all states
were zero at the final time T, i.e. the control purpose was
achieved by the proposed control scheme. An animation of
the simulation result is given in Fig. 6.

Fig. 6 Animation of simulation result.

6. Conclusions

We addressed the control problem of 3 DOF free flying
objects from their initial configurations to the desired
configurations using bang-bang control inputs. We reduced
the DOF of the original system in the first control phase
and determined the control input to steer the reduced order
system to the desired configuration by bang-bang control.
The computer simulation for a motion planning of the
planar diver approximated by 3 links was carried out to
verify the effectiveness of the proposed control scheme.

We consider this bang-bang control input that has
switching time information useful in actual experiments
because of its simplicity.

Appendix I

The angular momentum of 3 link flying objects is described as

a b . c ..

Py=(J, +-20—(J, 4 =i~ (Jy + Yy, (AD)
my my my

where

a, = mlM(ll2 +r2)+m1m2(112 +122 +4r2)+m2M(112 +r2)+

2mlir(M +2m,)cosy, +2myl,y(M +2m,)cosy, +

2mmyhl, cos(y, =)
=k +k, +ky + 2k, cosy, + 2k, cosy, +

2kgcos(y, —v,)

by = my (M +m,)I} + mlr(M +2m,)cosy, +

mymyll, cos(y, — /)

=k, +kgcosy+ kg cos(y, —vw,)

co = my(M +m)Z +myl,r(M +2m))cosy, +

mymyll, cos(y, —/,)
= ks + k, cosy+ kg cos(y, )

my=m+my+M, J,=J+J,+J

Appendix 11

myFy
mOJa + a(q) ’
J +b(q)
mOJa + a(q) ’

a(q) =

o) = (A2)

where

a(q) =k +k; +k; +2kg(cos(yy, ) cos(q,) -
sin(y,,)sin(g,)) + 2k, (cos, cos(d,) ~
Sin(y, )sin(q,)) + 2k (cosw, —¥,)
cos(q, — q,) —sin(y,, —¥5,)sin(q; —45))
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b(q) =k, +2ks(cos(y,, ) cos(q,) -
sin(y,,)sin(q,)) + kg (cos(yy, —¥»,)
cos(q, —¢,) —sin(y,, —y,,)sin(g, — ¢,))

c(q) = ks +k,(cos(y,, ) cos(q,) —
sin(y,, )sin(q2)) + kg(cos(y;, —v5,)
c0s(q, —¢,) —sin(y,, —¥,,)sin(g, — q,))

References

(1] JM. Godhavn, A. Balluchi, L.S. Crawford, S.S.
Sastry, “Steering of a class of nonholonomic systems
with drift terms”, Automatica, vol. 35, pp. 837-847,
1999.

[2] M. Sampei, H. Kiyota, “Control of Underactuated
Flying Objects”, Proc. of Titech COE Workshop, pp.
266-271, 1999.

(31 M. Kamon, K.Yoshida, “3 Dimensional attitude
control methods for free-flying dynamic system with
initial angular momentum”, Journal of RSJ, pp. 223-
231,1998.

[4] H. Nakamura, T. Mita, “Posture control of a free
flying robot with initial angular momentum”, Proc.
SICE DST Symposium, pp. 255-260, 1999,

{51 Zexiang Li, J. F. Canny, “Nonholonomic motion
planning”, Kluwer Academic Publishers.

[6] T. Mita, S. H. Hyon, and T. K. Nam, “Analytical time
optimal control solution for free flying objects with
drift term”, Proc. of IEEE CDC, pp. 91-94, 2000.

[7]1 A. P. Sage, C. C. White, “Optimum systems control”,
Prentice Hall.

[8] S. Moriguchi, K. Udagawa, S. Ichimatsu,
“Mathematical Formula I, Iwanami Pub Co., 1987.

[91 Y. Chen et al., “A Proof the Structure of the minimum
time control law of robotic manipulators using a
Hamilton formulation”, IEEE Trans. on Robotics and
Automation, vol. 6, no. 3, pp. 388-393, 1990.

[10] D. E. Rosenthal and M. A. Sherman, “High
performance multi-body simulations via symbolic
equation manipulation and Kane’s method”, Journal
of Astronautical Science, vol. 34, no. 3, pp. 223-239,
1986.

[11] P. J. Brancazio, “Sport science physical laws and
optimum performance”, Simon and Schuster Inc.,
1984,

Taek-Kun Nam

He received the B.S. and the M.S.
degree in engine engineering from
Korea Maritime University, Korea, in
1990 and 1996, respectively. He
received Dr. Eng. degree in control
system engineering from the Tokyo
Institute of Technology, Japan in 2001.
He joined the Machine Control and Application Group,
Korea Electrotechnology Research Institute as a senior
researcher in 2002. He is an instructor of Dept. of engine
engineering in Mokpo National Maritime University from
2003.

Yong-Joo Kim
He received the B.S. degree in
electrical engineering from Seoul
National University, Korea, in 1975.
He received Dr. Eng. degree in
electrical  engineering from the
Rensselaer Polytechnic Institute(R.P.1),
; USA in 1987. Now he is a group
leader of the Machine Control and Application Group,
Korea Electrotechnology Research Institute(KERI).



