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Abstract

Motions of animals and gymnasts in the air as well as free flying space robots without
thruster are subject to nonholonomic constraints generated by the law of conservation
of angular momentum. The interest in nonholonomic control problems is motivated by
the fact that such systems can not stabilized to its equilibrium points by the smooth
control input. The purpose of this paper is to derive analytical posture control laws for
free flying objects in the air. We propose a control method using bang-bang control for
trajectory planning of a 3 link mechanical system with initial angular momentum. We
reduce the DOF (degrees of freedom) of control object in the first control phase and
determine the control inputs to steer the reduced order system from its initial position
to its desired position. Computer simulation for a motion planning of an athlete
approximated by 3 link is presented to illustrate the effectiveness of the proposed
control scheme.

1. Introduction particular, athlete’s performances also

include rotation in midair called a

The nonholonomic system can be somersault or a flip. The initial angular
derived from the constraints that are not momentum that the athletes acquire in
integrable in mechanical system. Various  the pre-flight phase remains constant
motions of an athlete such as platform after he or she takes off the ground, but
diving. horizontal bar, horse vault, floor it is transferred to their rotation axis- in
exercises are subject to nonholonomic  other  words,  the  gymnasts  will
constraints generated by the law of automatically begin to rotate about their
conservation of angular momentum. In center of gravity. Therefore, the initial
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angular momentum plays an important
role in posture control of an athletes in
midair. We plan to develop a planar
gymnastic robot and to accomplish the
motion of an athlete in the flight phase.
To realize the motion of gymnast, we
need to derive a control law to achieve its
goal. The purpose of this paper is to
design a configuration control law for a
free flying gymnast with an initial
angular momentum.

There are related works of trajectory
planning for nonholonomic systems with

~[3]

el 1 .
initial angular momentum'" Sampei

(2}

et al. shown that error of the system

becomes locally controllable when the
reference trajectory of the body angle is
given by a certain first order function of
time and proposed a linear feedback
control method to stabilize the closed
loop system. However, there is no
guarantee that the error converges to
zero when the control terminal time is
finite. Kamon et al®. formulated the
configuration control of a 3 dimensions
somersault as a path planning problem
and derived a minimum energy trajectory
method.

has proposed motion

by numerical optimization
Godhavn et al'’.
planning for a diver

planar using

reaching control and manifold control
based on numerical computation. In this
scheme the solution is not unique since
the control input is generated by a
random process. An analytical solution
for motion planning of 2 DOF free flying
object with drift by time optimal control
was derived in Mita"®.

In  this

configuration control law for 3 DOF free

paper, we propose a

angular
Q)

with initial

momentum using bang-bang control

flying objects
which has n-1 switching: n is the number
of general coordinates. The proposed
method reduce the DOF in finite time
ty, 0< ¢, < T final time), and

trajectory from its

plan the

initial states to
desired position for the reduced order
system. The computer simulation for a
athlete

approximated by 3 links is presented to

motion planning of an

show the effectiveness of proposed control
algorithm.

2. Control problem

2.1 Control object

We deal with the configuration control
problems of a 3 link planar gymnastic
robot as shown in Fig.1.

Fig. 1 Planar gymnastic robot composed of
revolute joints.

The robot is composed of an arm and a
leg of lengths /4,75, weights m; and m,
and moments of inertia Ji,J,. M and J
denote the body of weight and the
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moment of inertia, respectively. The
are attached to the
revolute joints with distance r from the

limbs body via
center of CG (center of gravity) of the
body. The configuration of the robot can

be described by ¢, ¢,, 0. ¢, reveals the

relative angle between the body and the

arm, and ¢, is the relative angle between

the body and the leg, and @ implies the
absolute angle of the body with respect to
horizontal.

2.1 Control problem

Suppose that the robot has a nonzero

constant angular momentum P, which is

provided by contact with the floor. Such
an angular momentum remains constant
after the robot takes off the ground as an
initial angular momentum. The initial
given as (see

angular momentum is

Appendix. I)

Po= Ut ) 0=t ) b1~ Ut ) b2 (1)

where J, J1,J2 are functions of ¢4, ¢-.

Then the law of conservation of angular
momentum can be derived as
moPy Jitbo J2tep

mol,tay, myl.tay gt mol .+ ag 2 (2)
719D +72(d1, b2 b1+ 73(b1. o) &2

9 =

i

Defining the generalized coordinates as

x=(¢, ¢ 07T and the control inputs as

u,= ¢, us= ¢, then we have

) 0 1 0
2=10|+|0 11 = (3
71 Y2 73

The control problem is to derive a control
input which can drive the system from its

(528)

initial state x, to its desired state x, at

fixed final time 7. Considering the error

(g=x—x, Dbetween the current state

value and the desired value, we have

, 0 1 0
qg = 0 + 0 1 u
a(q1,4q2) axay,q9) axay,a9) (4)
=R+ Hu

where a,a4,a3 are functions of ¢ (see

Appendix. II). We
control problem changed to derivation of

can see that the

control input to stabilize error variables q.
Godhavn ' generalized the STLC(Small
time locally controllability) for an affine
nonlinear control system with drift.
Applying the control input w=Av,A>0 to
eq. (4), and scaling the time with z=Aar .
then we have

i~ L g+ Glayw (5)

Since the drift term can be compensated
by a large control input, i.e. /A=0, the
system will be equivalent to a driftless

controllability  is
STLC
3 DOF nonholonomic

system and the
guaranteed. This property is
guaranteed for
systems that have 2 control inputs, but
not generally guaranteed for a 2 DOF
nonholonomic system with one control

input.

3. Trajectory control by reducing DOF

We will design a control laws that steer
the system eqg. (4) from  its initial
configuration to the origin. As the first
control phase, we consider the control

input that reduces the order of system. If
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an initial state (g5(0)>¢,(0)) lies in Resg.
1 (qo(0)>1g, () as shown in Fig.2, we

will determine the control input
D= (u,—u,) (6)

where u, denotes the maximum control

input.
Applying control input (6) to eq. (4),
trajectories of ¢, g3 become

a1(D=u ,t+q1(0) 7

42(f):‘umt+qz(0)

Fig. 2 Control input to reduce the order of system

Here, we define the reducing order

surface( ROS 1)

ROS I={q1,9, € R|q,(t) = q,(1)} (8)

The initial states in Reg.l or Reg.2 will
move to the ROS I by the control input.
When the states ¢, and ¢, arrived at the

ROS I, ¢.(#) becomes equal to g¢,(#), then

the system is reduced to second order
system. We can also consider control
input

wW(=(—tn um’ (9

for an initial states in Reg.3
(—g50<lg (O or Reg.4 (g,(0)>g:(0)).
Applying control input, eq. (9) to eq. (4),

we have

QI(t)z_umt+QI(0), QZ(t)zun1t+42(0) (10)

We see that the state variables ¢, g9

move to ROS I and the system becomes
to second order system. We will define ¢,
the time when the

g.(D=¢g-,(D. Since the DOF of system is

states satisfy
reduced, we just consider the problem as
how to move states ¢i,¢3 from its initial
states of reduced order system to the
origin. The states and control inputs of
reduced order system, i.e. the state
variables on the ROS I (#¢,) are defined
as
1= 4= 7, (11)
U= U= U
Now the system equations of the reduced
order system can be described as

" =

ég 201(Q)+(a2(4)+d’3((1))u (12)
=a(n+B8(Du

In order to steer the states 7,43 to the
origin, we apply bang-bang control input.
We have to analyze the trajectories of

system, eq. (12) in order to apply a
bang-bang input, e.g. u=u,, OY U=—1u,,
Let us control input be

Uu=—1u, (13)

Substituting eq. (13) into eq. (12), then
we have

7= (14)
a3 =a (9 —B1(Du,,
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The body angle g3 which is the solution

of eq. (14) is given as

gs{D=h,(p+C, (15)

where hl(ri):—u—lm S\ = B (Bu )

and C,; denotes integral constant. The

second equation of (14) can be derived
from  differentiation of eq. (15).
Substituting eq. (4) into eq. (15), then

we have ©

W\ /2sinp+W,/2cos p+ W, ,
W, sin p+W,cos p+ W, @

W, =W )tan(n7/2)+ W,
\/W3Z _le _sz

}'1(77)='Lv

_’7+ W, -W,

2 wiowowy

tan ™' (

(16)
where
Wy =—2(kg sin ¢, + k7 sing,,)
Wy=2(kg cos ¢1,+ kq cos ¢,)
Ws=moJ + kit kot kst 2kgcos (¢1,—¢y,)

—my P
Wo= 0 S0 Lok ot kb st 2k cos (61, )

(16) has

Therefore, we

The function tan ~'(*) in eq.

discontinuity at #= *m.

need to modify the calculation of

tan ~Y(*)as

w, —Wz)tan(r]/Z—kﬂ)+W,)

kr+tan”'( = - =
W (1

The trajectory of #£,(») is shown in Fig. 3.
Next, we consider control input u=u,,

then we have

T = (18)
a3 =a () +B8(Du,,

from (12). The solution of ¢j is

a3(=hy(D+C, (19)

where

(530)

1 p
b= [ (p)+ A(p)u, )dp
n, W-W
=4
2 \/sz_le_sz

W —Wy)tan(n/2)+ W,

tan ™ ( = = 5
\/Wz_ W=,

(20)

where Wy=mPo/u,+t ]+ ot byt kst 2k
Ccos (¢17_ ¢’27)

The trajectory #£.(7) after compensating

the discontinuity is shown in Fig. 3.

h1(n) h2(n)

Fig. 3 Trajectories of % ,(7) and /,(7).

The trajectories of g3 calculated from

eq. (15), eq. (19) are shown in Fig. 4.
The trajectories I leading to left and

trajectories II leading to right are
obtained by changing C; in (15) and C,

in (19), respectively.

q3

I A I

\\>‘U

tz bttt 2
Fig. 4 Trajectory of g4 to 7
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From fig. 4, we can determine the
suitable trajectory from initial states to
the origin. Suppose that initial states
7(t1),q3(t)) were located in the fourth
invariant

quadrant and under the

manifold I, it becomes #(¢;)=0. In this
case, we apply control input as u#=u,
until the trajectory meets path which
leads to left. Then the trajectory leading
to right will intersect at ¢t=t¢, with other

fourth
final

path which moves from the

quadrant to the origin. The
approach is to switch the control input as
u()=—u,, t,<t<7T. Therefore, we can
steer the states of reduced system from

its initial position to the origin.
Repeating this procedure, initial states
”t),q5(t;) in the third quadrant and
under the invariant manifold Il can be
steered to the origin by the control inputs

Ul = Uy <1< 1y, u(h=—1w,, [, <t<T.
When the initial states #5(¢;),q4(t,) are
not exist under the invariant manifold 7
or II. we introduce new initial states as
7t1),q5(t) —2x It gives the solution for
the robot body rotated 2.

Now we can compile configuration
control for the gymnastic robot from its
initial states to the origin. In case an

initial states located in

Reg.1 q2(0)>1g1(0), g3(0)<0 (21)
Reg.2 q1(0)<lg5 0], q3(0)<0

then the control inputs become

(um _um) T,(t()ét.étl)
ulD={ (—u, —u) ', (t,<I<ty) (22)
(uy w1, (t,<t<T)

For the initial states in

(531)

Reg.3 q2(0)<|g (0, g5(0)<0 (23)
Reg.4 q,(0)>1g, (0, a3 (0)<0

The control inputs become

(mtpmun) (tg<t<t)
wW(D={ (—wupm —uy L (<t<ty) (24)
(t wn) | (t,<t<T)

Consequently, the gymnastic robot
represented by eq. (3) can be controlled
from its initial position to its desired one
by two times switching control inputs eq.

(22), eq. (24).

4. Switching time calculation

In this
switching time to steer all

section we will calculate
states to
origin with 2 times switching. Let us
assume the initial states lie in Reg. 2.

From eq. (4) and eq. (22) we can get
g1D=u,t+a(0), g:(D=—ut+4q,(0) (25

Since the in ROS 1
q.(t)=qy(#;), we have

states satisfy

q2(0)—q,(0)

Hh= . q1(0)>q5(0) (26)

2
Applying the second control input
u=(—wu, —u, ., (,{t<t, we get
g1(ta)=—u,(t—t)+q:(£1) (27)
From eq. (27), we obtain
ty= unt1+a,(21)—q,(ty) (28)

Um

Finally, applying «=(u, u,) ", t,<T ,

we have
gl(T)zum(T~t2)+q1(t2) (29)

using ¢ ,(7)=0, we have final time
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umt2_01(t2)
Um

T= (30)

However we need to obtain ¢(¢,) before
calculating the switching time ¢, and

final time 7. In order to get information

for ¢i(¢;). consider the state trajectory
a3(H, ,<t<T. From eq. (15), eq. (19) we
get

Q3(t):h1(77)+cl, flsfétz (31)
(13(1‘)=h2(7])+C2, l‘zétﬁT

We can calculate an integral constant
CI:CIS(h)_hl(’?(tl)) (32)

from ¢3(A=h (p+C;, t=t,. Considering
as(D=hy(a(1)=0 and (32), we have

23()=h1(D+ast)— (1), 11<i<t;  (3g)
g =hy(m), t,<t<T

Both the trajectories of eq. (33) should be

equal at t=1¢,, i.e.

() —hola(t)) =—qo(t )+ h\(9(£))) (34)

We used quad8 function in MATLAB to
calculate ¢3(#,) which satisfies eq. (34).

Finally, we can derive 7(¢,),7.e. q,(f;)

77(t2): —2W1+2tan -1 (35)
(Cstan(_03(f1)+h1(77(f1))))

Wi — Wi— Wi
where Ci;= Wy~ Wo)( Wy~ Wa)

Using the information of ¢,(#,), we can
obtain switching time ¢5. final time 7T

from eq. (28). eq. (30). respectively.

5. Application to planar diving

We applied proposed control scheme to
the configuration control of planar diving.

(532)

Simulation results for a 3 link gymnastic
robot with parameters

Py=1T00 kgm*[s], M=40kg], m , = 10[ kg], m»= 15[ kg]
11=0.6[m], 1,=0.9[m], =0.15[m] with u,=4[/s]

are shown in Fig. 5.
The initial and desired state values were

xo=(—0.50 0.5 Tand x,= 0252 "

ie.qe=(=0.50 —3n "Tand ¢,=(000)".
respectively. We can see that the control
performance will be one and half rotation
in midair. The switching time
determined as ¢;=0.0625[s], £,=0.9628[s],
T=1.9256[s]. Fig. 5(a) and Fig. 5(b)

depict time evolution of the states and

were

the control inputs, respectively.

1—
[rad)o .

sy
21
3 ;
-4}
5t
-6}
7t
-8}
-Qt—_

- i i i
10 0.10305 1

Fig. 5 (a) Time evolution of states in planar
diving,

g

4 — — Y, |
Sl Y i

010305 1

1 i
156 [sec} 2

Fig. 5 (b) Time evolution of control inputs in
planar diving.
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We can observe that all state variables
qg1,49,43 were zero at the final time T

from fig. 5(a), i.e. the control purpose

was achieved by the proposed control
scheme. The animation of the simulation

result is given in Fig. 5 (¢).

ML
O

’

Fig. 5 (¢) Animation of the simulation result.

6. Conclusions

We addressed control problem of the 3
DOF free flying objects from its initial
configuration to the desired configuration
using bang-bang control inputs. We
reduced the DOF of original systems in
the first control phase and determined
the control inputs to steer the reduced
order systems to the desired
configuration by bang-bang control. The
motion

computer simulation for a

planning of the planar diver
approximated by 3 links was carried out
effectiveness of the
From the

bang-bang

to verify the

proposed control scheme.

simulation results, this
control input which has switching time
information is useful for real experiment

because of its simplicity.

(533)
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Appendix. |

The angular momentum of 3 link flying
object is

Po= Ut —E) 0-Ur+ 2

(1-’1_(124‘760) dy

(A1)

where

apy= mlM(l%-i— r§)+m1m2(l%+l§+472)
+m M5+ 72 +2m L, M+2m ) cos ¢,
+2m ol o {M+2my) cos dy+2m ymol s
cos (g1 — o) =k, + kot kst 2kgcos ¢,

+2k; cos ¢yt 2kgcos (¢ — ¢o)

Myung-Ok So

bo= m(M+ms)l3+m, i, {M~+2ms) cos ¢,
+mymylilycos (¢ —dy)
t=kytkgcos g+ kgcos (d1—¢o)

co= mo(M+m )5+ mylor{M+2m ) cos ¢
+mimalilygcos (p1—¢y)

t=ksthkicosdythgcos (¢1—¢y)
mo=m+myt M, ]a:]1+]2+]

Appendix. |l

m P
0’1((1): mofao-i-g(q) ,

()_ ]1‘+‘b((1)
CRU= " Jet aa)

_ atca
a’s(iI)— m02]a+a(q) s

where
aq)= ki +kytk;+2k;(cos(¢,,) cos (gq)

(A.2)

~ sin (¢,) sin (g 1)) +2k cos (¢3,) cos (g3)
~ sin (¢3,) sin (g2)) +2ke( cos (¢1,— ¢&3,)

cos (g1 —q3) —sin (¢1,— ¢,) sin (g, —q3))
(@)= ky+ke(cos(¢,)cos(g;)—sin(¢y,)sin(g}))

+kg(cos (¢, —¢d2)cos (g1 —q2)

~- sin(¢,— ¢2)sin(g;—¢q2)
(q@)= ks+ki( cos (¢,,) cos (g3)— sin (¢3,)

sin (g)) + ks cos (¢1,~ ¢3,)

cos (g1—gq2) —sin(¢,— ¢y sin (g1 —q3))
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