• 제목/요약/키워드: Band-to-band-tunneling

Search Result 83, Processing Time 0.023 seconds

Tunneling Current Calculation in HgCdTe Photodiode (HgCdTe 광 다이오드의 터널링 전류 계산)

  • 박장우;곽계달
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.9
    • /
    • pp.56-64
    • /
    • 1992
  • Because of a small bandgap energy, a high doping density, and a low operating temperature, the dark current in HgCdTe photodiode is almost composed of a tunneling current. The tunneling current is devided into an indirect tunneling current via traps and a band-to-band direct tunneling current. The indirect tunneling current dominates the dark current for a relatively high temperature and a low reverse bias and forward bias. For a low temperature and a high reverse bias the direct tunneling current dominates. In this paper, to verify the tunneling currents in HgCdTe photodiode, the new tunneling-recombination equation via trap is introduced and tunneling-recombination current is calculated. The new tunneling-recombination equation via trap have the same form as SRH (Shockley-Read-Hall) generation-recombination equation and the tunneling effect is included in recombination times in this equation. Chakrabory and Biswas's equation being introduced, band to band direct tunneling current are calculated. By using these equations, HgCdTe (mole fraction, 0.29 and 0.222) photodiodes are analyzed. Then the temperature dependence of the tunneling-recombination current via trap and band to band direct tunneling current are shown and it can be known what is dominant current according to the applied bias at athe special temperature.

  • PDF

Dependency of Tunneling Field-Effect Transistor(TFET) Characteristics on Operation Regions

  • Lee, Min-Jin;Choi, Woo-Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.4
    • /
    • pp.287-294
    • /
    • 2011
  • In this paper, two competing mechanisms determining drain current of tunneling field-effect transistors (TFETs) have been investigated such as band-to-band tunneling and drift. Based on the results, the characteristics of TFETs have been discussed in the tunneling-dominant and drift-dominant region.

Triple-gate Tunnel FETs Encapsulated with an Epitaxial Layer for High Current Drivability

  • Lee, Jang Woo;Choi, Woo Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.2
    • /
    • pp.271-276
    • /
    • 2017
  • The triple-gate tunnel FETs encapsulated with an epitaxial layer (EL TFETs) is proposed to lower the subthreshold swing of the TFETs. Furthermore, the band-to-band tunneling based on the maximum electric-field can occur thanks to the epitaxial layer wrapping the Si fin. The performance and mechanism of the EL TFETs are compared with the previously proposed TFET based on simulation.

Compact Current Model of Single-Gate/Double-Gate Tunneling Field-Effect Transistors

  • Yu, Yun Seop;Najam, Faraz
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.2014-2020
    • /
    • 2017
  • A compact current model applicable to both single-gate (SG) and double-gate (DG) tunneling field-effect transistors (TFETs) is presented. The model is based on Kane's band-to-band tunneling (BTBT) model. In this model, the well-known and previously-reported quasi-2-D solution of Poisson's equation is used for the surface potential and length of the tunneling path in the tunneling region. An analytical tunneling current expression is derived from expressions of derivatives of local electric field and surface potential with respect to tunneling direction. The previously reported correction factor with three fitting parameters, compensating for superlinear onset and saturation current with drain voltage, is used. Simulation results of the proposed TFET model are compared with those from a technology computer-aided-design (TCAD) simulator, and good agreement in all operational bias is demonstrated. The proposed SG/DG-TFET model is developed with Verilog-A for circuit simulation. A TFET inverter is simulated with the Verilog-A SG/DG-TFET model in the circuit simulator; the model exhibits typical inverter characteristics, thereby confirming its effectiveness.

Study of Nonvolatile Memory Device with SiO2/Si3N4 Stacked Tunneling Oxide (SiO2/Si3N4 터널 절연악의 적층구조에 따른 비휘발성 메모리 소자의 특성 고찰)

  • Cho, Won-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.1
    • /
    • pp.17-21
    • /
    • 2009
  • The electrical characteristics of band-gap engineered tunneling barriers consisting of thin $SiO_2$ and $Si_3N_4$ dielectric layers were investigated for nonvolatile memory device applications. The band structure of band-gap engineered tunneling barriers was studied and the effectiveness of these tunneling barriers was compared with the conventional tunneling $SiO_2$ barrier. The band-gap engineered tunneling barriers composed of thin $SiO_2$ and $Si_3N_4$ layers showed a lower operation voltage, faster speed and longer retention time than the conventional $SiO_2$ tunnel barrier. The thickness of each $SiO_2$ and $Si_3N_4$ layer was optimized to improve the performance of non-volatile memory.

Thermally Assisted Carrier Transfer and Field-induced Tunneling in a Mg-doped GaN Thin Film (Mg가 첨가된 GaN 박막에서 캐리어 전이의 열적도움과 전계유도된 터러링 현상)

  • Chung, Sang-Geun;Kim, Yoon-Kyeom;Shin, Hyun-Gil
    • Korean Journal of Materials Research
    • /
    • v.12 no.6
    • /
    • pp.431-435
    • /
    • 2002
  • The dark current and photocurrent(PC) spectrum of Mg-doped GaN thin film were investigated with various bias voltages and temperatures. At high temperature and small bias, the dark current is dominated by holes thermally activated from an acceptor level Al located at about 0.16 eV above the valence band maximum $(E_v)$, The PC peak originates from the electron transition from deep level A2 located at about 0.34 eV above the $E_v$ to the conduction band minimum $(E_ C)$. However, at a large bias voltage, holes thermally activated from A2 to Al experience the field-in-duces tunneling to form one-dimensional defect band at Al, which determines the dark current. The PC peak associated with the transition from Al to $E_ C$ is also observed at large bias voltages owing to the extended recombination lifetime of holes by the tunneling. In the near infrared region, a strong PC peak at 1.20 eV appears due to the hole transition from deep donor/acceptor level to the valence band.

Study of Nonvolatile Memory Device with $SiO_2/Si_3N_4$ stacked tunneling oxide (터널링 $SiO_2/Si_3N_4$ 절연막의 적층구조에 따른 비휘발성 메모리 소자의 특성 고찰)

  • Cho, Won-Ju;Jung, Jong-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.189-190
    • /
    • 2008
  • The electrical characteristics of band-gap engineered tunneling barriers consisting of thin $SiO_2$ and $Si_3N_4$ dielectric layers were investigated. The band structure of stacked tunneling barriers was studied and the effectiveness of these tunneling barriers was compared with that of the conventional tunneling barrier. The band-gap engineered tunneling barriers show the lower operation voltage, faster speed and longer retention time than the conventional $SiO_2$ tunnel barrier. The thickness of each $SiO_2$ and $Si_3N_4$ layer was optimized to improve the performance of non-volatile memory.

  • PDF

The Optimal Design of Junctionless Transistors with Double-Gate Structure for reducing the Effect of Band-to-Band Tunneling

  • Wu, Meile;Jin, Xiaoshi;Kwon, Hyuck-In;Chuai, Rongyan;Liu, Xi;Lee, Jong-Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.3
    • /
    • pp.245-251
    • /
    • 2013
  • The effect of band-to-band tunneling (BTBT) leads to an obvious increase of the leakage current of junctionless (JL) transistors in the OFF state. In this paper, we propose an effective method to decline the influence of BTBT with the example of n-type double gate (DG) JL metal-oxide-semiconductor field-effect transistors (MOSFETs). The leakage current is restrained by changing the geometrical shape and the physical dimension of the gate of the device. The optimal design of the JL MOSFET is indicated for reducing the effect of BTBT through simulation and analysis.

Role of Quantum Confinement Effect on Tunneling Operation of LTFET Devices

  • Najam, Faraz;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.241-242
    • /
    • 2017
  • Part of the channel in L-shaped tunnel field-effect transistor (LTFET) is very thin and suffers from quantum confinement effect. Role of quantum confinement effect on band-to-band-tunneling (BTBT) of LTFET was investigated using numerical simulation and band diagram analysis. It was found that quantum confinement effect significantly affects the BTBT mechanism of LTFET devices.

  • PDF

Resonance tunneling phenomena by periodic potential in type-II superconductor

  • Lee, Yeong Seon;Kang, Byeongwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.1
    • /
    • pp.1-5
    • /
    • 2014
  • We calculated the resonance tunneling energy band in the BCS gap for Type-II superconductor in which periodic potential is generated by external magnetic flux. In this model, penetrating magnetic flux was assumed to be in a fixed lattice state which is not moving by an external force. We observed the existence of two subbands when we used the same parameters as for the $Nd_{1.85}Ce_{0.15}CuO_X$ thin film experiment. The voltages at which the regions of negative differential resistivity (NDR) started after the resonant tunneling ended were in a good agreement with the experimental data in the field region of 1 T - 2.2 T, but not in the high field regions. Discrepancy occurred in the high field region is considered to be caused by that the potential barrier could not be maintained because the current induced by resonant tunneling exceeds the superconducting critical current. In order to have better agreement in the low field region, more concrete designing of the potential rather than a simple square well used in the calculation might be needed. Based on this result, we can predict an occurrence of the electromagnetic radiation of as much difference of energy caused by the 2nd order resonant tunneling in which electrons transit from the 2nd band to the 1st band in the potential wells.