• Title/Summary/Keyword: Banach fixed point theorem

Search Result 135, Processing Time 0.024 seconds

Existence and Uniqueness of Solutions for the Fuzzy Differential Equations in n-Dimension Fuzzy Vector Space (n-차원 퍼지벡터공간에서의 퍼지미분방정식에 대한 해의 존재성과 유일성)

  • Gwon, Yeong-Cheol;Kim, Oe-Hyeon;Park, Dong-Geun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.23-25
    • /
    • 2008
  • In this paper, we study the existence and uniqueness of solutions for the fuzzy differential equations in ${(E_N)^n}$ using by Banach fixed point theorem. ${(E_N)^n}$ is n-dimension fuzzy vector space.

  • PDF

STRONG CONVERGENCE THEOREMS OF COMMON ELEMENTS FOR EQUILIBRIUM PROBLEMS AND FIXED POINT PROBLEMS IN BANACH SPACES

  • Wang, Ziming;Su, Yongfu
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.783-796
    • /
    • 2010
  • We introduce a new iterative algorithm for equilibrium and fixed point problems of three hemi-relatively nonexpansive mappings by the CQ hybrid method in Banach spaces, Our results improve and extend the corresponding results announced by Xiaolong Qin, Yeol Je Cho, Shin Min Kang [Xiaolong Qin, Yeol Je Cho, Shin Min Kang, Convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spaces, Journal of Computational and Applied Mathematics 225 (2009) 20-30], P. Kumam, K. Wattanawitoon [P. Kumam, K. Wattanawitoon, Convergence theorems of a hybrid algorithm for equilibrium problems, Nonlinear Analysis: Hybrid Systems (2009), doi:10.1016/j.nahs.2009.02.006], W. Takahashi, K. Zembayashi [W. Takahashi, K. Zembayashi, Strong convergence theorem by a new hybrid method for equilibrium problems and relatively nonexpansive mappings, Fixed Point Theory Appl. (2008) doi:10.1155/2008/528476] and others therein.

FIXED POINTS FOR SOME CONTRACTIVE MAPPING IN PARTIAL METRIC SPACES

  • Kim, Chang Il;Han, Giljun
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.387-394
    • /
    • 2020
  • Matthews introduced the concepts of partial metric spaces and proved the Banach fixed point theorem in complete partial metric spaces. Dukic, Kadelburg, and Radenovic proved fixed point theorems for Geraghty-type mappings in complete partial metric spaces. In this paper, we prove the fixed point theorem for some contractive mapping in a complete partial metric space.

FIXED POINT THEOREMS FOR SET-VALUED MAPS IN QUASI-METRIC SPACES

  • Cho, Seong-Hoon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.4
    • /
    • pp.599-608
    • /
    • 2010
  • In this paper, we introduce the concept of generalized weak contractivity for set-valued maps defined on quasi metric spaces. We analyze the existence of fixed points for generalized weakly contractive set-valued maps. And we have Nadler's fixed point theorem and Banach's fixed point theorem in quasi metric spaces. We investigate the convergene of iterate schem of the form $x_{n+1}{\in}Fx_n$ with error estimates.

APPLICATION OF FIXED POINT THEOREM FOR UNIQUENESS AND STABILITY OF SOLUTIONS FOR A CLASS OF NONLINEAR INTEGRAL EQUATIONS

  • GUPTA, ANIMESH;MAITRA, Jitendra Kumar;RAI, VANDANA
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.1_2
    • /
    • pp.1-14
    • /
    • 2018
  • In this paper, we prove the existence, uniqueness and stability of solution for some nonlinear functional-integral equations by using generalized coupled Lipschitz condition. We prove a fixed point theorem to obtain the mentioned aim in Banach space $X=C([a,b],{\mathbb{R}})$. As application we study some volterra integral equations with linear, nonlinear and single kernel.

Nonlinear Wave Interaction of Three Stokes' Waves in Deep Water: Banach Fixed Point Method

  • Jang, Taek-S.;Kwon, S.H.;Kim, Beom-J.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1950-1960
    • /
    • 2006
  • Based on Banach fixed point theorem, a method to calculate nonlinear superposition for three interacting Stokes' waves is proposed in this paper. A mathematical formulation for the nonlinear superposition in deep water and some numerical solutions were investigated. The authors carried out the numerical study with three progressive linear potentials of different wave numbers and succeeded in solving the nonlinear wave profiles of their three wave-interaction, that is, using only linear wave potentials, it was possible to realize the corresponding nonlinear interacting wave profiles through iteration of the method. The stability of the method for the three interacting Stokes' waves was analyzed. The calculation results, together with Fourier transform, revealed that the iteration made it possible to predict higher-order nonlinear frequencies for three Stokes' waves' interaction. The proposed method has a very fast convergence rate.

POSITIVE SOLUTIONS OF THE SECOND-ORDER SYSTEM OF DIFFERENTIAL EQUATIONS IN BANACH SPACES

  • Cao, Jianxin;Chen, Haibo;Deng, Jin
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1445-1460
    • /
    • 2010
  • In this paper, a second-order system of multi-point boundary value problems in Banach spaces is investigated. Based on a specially constructed cone and the fixed point theorem of strict-set-contraction operators, the criterion of the existence and multiplicity of positive solutions are established. And two examples demonstrating the theoretic results are given.

CONTROLLABILITY OF STOCHASTIC VOLTERRA INTEGRODIFFERENTIAL SYSTEMS

  • Subramaniam, R.;Balachandran, K.
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.2
    • /
    • pp.753-759
    • /
    • 2002
  • In this paper, sufficient conditions for the controllability of stochastic integrodifferential systems in Banach spaces are established. The results are obtained by using a fixed point theorem. An example is provided to illustrate the theory.