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FIXED POINT THEOREMS FOR SET–VALUED
MAPS IN QUASI–METRIC SPACES

Seong-Hoon Cho*

Abstract. In this paper, we introduce the concept of generalized weak
contractivity for set-valued maps defined on quasi metric spaces. We analyze
the existence of fixed points for generalized weakly contractive set-valued
maps. And we have Nadler’s fixed point theorem and Banach’s fixed point
theorem in quasi metric spaces. We investigate the convergene of iterate
schem of the form xn+1 ∈ Fxn with error estimates.

1. Introduction and Preliminaries

In [1], the authors introduced the concept of weakly contractive maps for

single valued maps on Hilbert spaces. This notion is one of generalizations

of contractions. They proved the existence of fixed points and confined their

theorems to Hilbert spaces. Rhoades [9] extended some of their theorems

to arbitrary Banach spaces. In fact, weakly contractive maps are closely

related to maps of Boyd and Wong type ones [6] and Reich type ones [9].

Recently, Bae [3] gave the notion of weak contractivity for set-valued

maps defined on metric spaces and gave some fixed point theorems for these

maps with inwardness or weakly inwardness conditions.

In [4], the authors proved the existence of coincidence points and com-

mon fixed points for two single valued maps satisfying generalized weakly

contractive conditions. They also constructed modified Mann and Ishikawa

iterative scheme which converge to the common fixed points of the two single

valued maps mentioned before.

In this paper we give the notions of generalized weakly contractive set-

valued maps in quasi-metric spaces, and we give a new fixed point theorems
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for these maps. And then we obtain a fixed point theorems for weakly

contractive set-valued maps, and we have Nadler’s fixed point theorem and

Banach’s fixed point theorem in quasi metric spaces. Also, we investigate the

convergene of iterate schem of the form xn+1 ∈ Fxn with error estimates,

where F is a weakly contractive set-valued map.

For the convenience, recall the following well known definition of a quasi-

metric space.

Let X be a nonempty set. A function d : X × X → [0,∞) is called a

quasi-metric on X if the following are satisfied:

(m1) d(x, y) ≥ 0 for all x, y ∈ X;

(m2) d(x, y) = 0 if and only if x = y;

(m3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

A nonempty set X together with a quasi-metric d is called a quasi-metric

space and it is denoted by (X, d). Note that the notion of a quasi-metric

space is a generalization of the notion of a metric space.

Throughout the paper, unless otherwise specified, X is assumed to be a

quasi-metric space with the quasi-metric d.

We know that each quasi-metric d on X generartes a T0 topology on X.

For a quasi-metric d on X, the conjugate quasi metric d−1 on X of d is

defined by d−1(x, y) = d(y, x). We denote by du the metric d∨ d−1, that is,

du(x, y) = max{d(x, y), d(y, x)}, for all x, y ∈ X.

We denote by K(X) the family of nonempty compact subsets of (X, du)

and by C(X) the family of nonempty closed subsets of (X, d). Let Hd on

C(X) be defined by

Hd(A,B) = max{supa∈Ad(a,B), supb∈Bd(A, b)}, A,B ∈ C(X),

where d(a,B) = inf{d(a, b) : b ∈ B} and d(A, b) = inf{d(a, b) : a ∈ A}.
We say that Hd on K(X) is the Hausdorff quasi-pseudometric(see [5,8]).

Let Dd(A,B) = supa∈Ad(a,B). Then obviousely Dd(A,B) ≤ Hd(A,B).

A sequence {xn} in X is called left K-Cauchy [10] if, for each ε > 0,

there exists an n0 ∈ N such that d(xn, xm) < ε for all m,n ∈ N such that
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m ≥ n ≥ n0. A sequence {xn} in X converges to some point x ∈ X if, for

each ε > 0, there exists an n0 ∈ N such that d(x, xn) < ε, for all n ≥ n0.

X is called left K-complete [10,12] if every left K-Cauchy sequence in X

is convergent with respect to d. X is called Smyth-complete [7,13] if every

left K-Cauchy sequence in X is convergent with respect to du. Obviousely,

We know that every Smyth-complete quasi-metric space is left K-complete.

In general, it is known that the converse implication does not hold.

Lemma 1.1. Let A ⊂ X. If A is a compact subset of (X, du), then it is

a closed subset of (X, d). That is, K(X) ⊂ C(X).

Proof. Let {xn} be a sequence in A such that limn→∞ d(x, xn) = 0 for

some x ∈ X. Since A is a compact subset of (X, du), there exist a subse-

quence {xnk
} of {xn} and a point z ∈ A such that limk→∞ du(z, xnk

) = 0.

Thus we have limk→∞ d(xnk
, z) = 0. From (m3) we have

d(x, z) ≤ d(x, xnk
) + d(xnk

, z).

Letting k → ∞ in above inequality, we get x = z and x ∈ A. Thus A is a

closed subset of (X, d). ¤

From now on, let ϕ : [0,∞) → [0,∞) be a nondecreasing function such

that

(ϕ1) ϕ(0) = 0,

(ϕ2) 0 < ϕ(t) < t for each t > 0,

(ϕ3) for any sequence {tn} of (0,∞),
∑∞

n=1 ϕ(tn) < ∞ implies∑∞
n=1 tn < ∞.

A set-valued map F : X → 2X is called weakly contractive [3] if, for each

x, y ∈ X,

Hd(Fx, Fy) ≤ d(x, y)− ϕ(d(x, y)).

A single valued map f : X → X is called weakly contractive [11] if, for

each x, y ∈ X,

d(fx, fy) ≤ d(x, y)− ϕ(d(x, y)).
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2. Fixed point theorems

A set-valued map F : X → 2X is called generalized weakly contractive if,

for each x, y ∈ X and u ∈ Fx, there exists a v ∈ Fy such that

d(u, v) ≤ d(x, y)− ϕ(d(x, y)). (2.1)

In this section, we give a new fixed point theorem for a generalized weakly

contractive set-valued map. And then we have a fixed point theorem for

a weakly contractive set-valued map and Nadler’s fixed point theorem in

quasi-metric space.

Theorem 2.1. Let (X, d) be a Smyth-complete quasi-metric

space. If F : X → C(X) is a generalized weakly contractive set-valued map,

then F has a fixed point in X.

Proof. Let x0 ∈ X and x1 ∈ Fx0. By (2.1), there exists a x2 ∈ Fx1 such

that

d(x1, x2) ≤ d(x0, x1)− ϕ(d(x0, x1)).

Again by (2.1), there exists an x3 ∈ Fx2 such that

d(x2, x3) ≤ d(x1, x2)− ϕ(d(x1, x2)).

Continuing this process, we can find a sequence {xn} in X such that for

n = 0, 1, 2 · · ·

xn+1 ∈ Fxn and d(xn+1, xn+2) ≤ d(xn, xn+1)− ϕ(d(xn, xn+1)).

Thus the sequence {d(xn, xn+1)} is nonincreasing and so limn→∞ d(xn, xn+1) =

l for some l ≥ 0. We now show that l = 0. Suppose l > 0. Then we have

d(xn, xn+1) ≤ d(xn−1, xn)− ϕ(d(xn−1, xn)) ≤ d(xn−1, xn)− ϕ(l),

and so

d(xn+N , xn+N+1) ≤ d(xn−1, xn)−Nϕ(l),

which is a contradiction for N large enough. Thus we have

lim
n→∞

d(xn, xn+1) = 0.
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For m ∈ N with m ≥ 3, we have

d(xm−1, xm)

≤ d(xm−2, xm−1)− ϕ(d(xm−2, xm−1)) · · ·
≤ d(x1, x2)− ϕ(d(x1, x2))− · · · − ϕ(d(xm−2, xm−1)).

Hence we have
m−2∑

k=1

ϕ(d(xk, xk+1)) ≤ d(x1, x2)− d(xm−1, xm).

Letting m →∞ in above inequality, we have
∞∑

n=1

ϕ(d(xn, xn+1)) ≤ d(x1, x2) < ∞

which implies
∞∑

n=1

d(xn, xn+1) < ∞ by (ϕ3).

Thus {xn} is a left K-Cauchy sequence in (X, d). Since the space (X, d) is

Smyth-complete, there exists a p ∈ X such that

lim
n→∞

du(xn, p) = 0.

Thus we have

lim
n→∞

d(xn, p) = 0 and lim
n→∞

d(p, xn) = 0.

We now show that p is a fixed point of F .

From (2.1) there exists zn ∈ Fp such that

d(xn+1, zn) ≤ d(xn, p)− ϕ(d(xn, p)).

Letting n →∞ in above inequality, we have limn→∞ d(xn+1, zn) = 0. Thus

we have

d(p, zn) ≤ d(p, xn+1) + d(xn+1, zn).

Letting n →∞ in above inequality, we have

lim
n→∞

d(p, zn) = 0.
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Therefore, p ∈ Fp because Fp ∈ C(X). ¤

Example 2.1. Let X = { 1
2n : n = 0, 1, 2 · · · } ∪ {0} and let d(x, y) ={

y − x (y ≥ x)
2(x− y) (x > y)

for all x, y ∈ X. Then (X, d) is a Smyth complete

quasi-metric space.

Let ϕ(t) = 1
2 t for all t ≥ 0 and let F : X → C(X) be a set-valued map

defined as

Fx =

{
{ 1

2n+1 , 0} (x = 1
2n , n = 0, 1, 2, · · · ),

{0} (x = 0).

We now show that F satisfies condition (2.1).

Case 1. x = 0 and y = 1
2n (n = 0, 1, 2, · · · ).

For u = 0 ∈ Fx there exists v = 0 ∈ Fy such that

d(u, v) = d(0, 0) = 0 ≤ d(x, y)− ϕ(d(x, y)).

Case 2. x = 1
2n (n = 0, 1, 2, · · · ) and y = 0.

For u = 0 ∈ Fx there exists v = 0 ∈ Fy such that

d(u, v) = d(0, 0) = 0 ≤ d(x, y)− ϕ(d(x, y)).

For u = 1
2n+1 ∈ Fx there exists v = 0 ∈ Fy such that

d(u, v) = d(
1

2n+1
, 0) =

1
2n

≤ d(x, y)− ϕ(d(x, y)).

Case 3. x = 1
2n and y = 1

2m (m > n).

For u = 0 ∈ Fx there exists v = 0 ∈ Fy such that

d(u, v) = d(0, 0) = 0 ≤ d(x, y)− ϕ(d(x, y)).

For u = 1
2n+1 ∈ Fx there exists v = 1

2m+1 ∈ Fy such that

d(u, v) = d(
1

2n+1
,

1
2m+1

) =
2m − 2n

2n+m
≤ d(x, y)− ϕ(d(x, y)).

Case 4. x = 1
2m and y = 1

2n (m > n).

For u = 0 ∈ Fx there exists v = 0 ∈ Fy such that

d(u, v) = d(0, 0) = 0 ≤ d(x, y)− ϕ(d(x, y)).

For u = 1
2m+1 ∈ Fx there exists v = 1

2n+1 ∈ Fy such that

d(u, v) = d(
1

2m+1
,

1
2n+1

) =
2m − 2n

2n+m+1
≤ d(x, y)− ϕ(d(x, y)).

Thus F is a generalized weakly contractive set-valued map and 0 ∈ F0.

From Lemma 1.1 we have the next Corollary.
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Corollary 2.2. Let (X, d) be a Smyth-complete quasi-metric space. If

F : X → K(X) is a generalized weakly contractive set-valued map, then F

has a fixed point in X.

Note that the condition (2.2) of the next Corollary 2.3 imply (2.1). Thus

from Theorem 2.1(Corollary 2.2) we have the following corollary.

Corollary 2.3. Let (X, d) be a Smyth-complete quasi-metric space. If

F : X → C(X)[or F : X → K(X)] is a set-valued map satisfying for each

x, y ∈ X

Dd(Fx, Fy) ≤ d(x, y)− ϕ(d(x, y)), (2.2)

then F has a fixed point in X.

Corollary 2.4. Let (X, d) be a Smyth-complete quasi-metric space. If

F : X → C(X)[or F : X → K(X)] is a weakly contractive set-valued map,

then F has a fixed point in X.

Corollary 2.5. Let (X, d) be a Smyth-complete quasi-metric space. If

f : X → X is a weakly contractive map, then f has a unique fixed point in

X.

Proof. From Corollary 2.4 there exists a point p ∈ X such that p = fp.

We show the uniqueness of the fixed point p of f . Let z ∈ X be such that

z = fz. If z 6= p, then d(p, z) > 0 and d(p, z) = d(fp, fz) ≤ d(p, z) −
ϕ(d(p, z)) < d(p, z) which is a contradiction. Thus we have p = z. ¤

Remark 2.1. In Theorem 2.1 ∼ Corollary 2.4, if the map is single valued

then it has a unique fixed point.

Let φ : [0,∞) → [0,∞) be a function satisfying the following conditions:

(φ1) φ(0) = 0 and 0 < φ(t) < t for each t > 0,

(φ2) t ≤ s implies φ(s)− φ(t) ≤ s− t,

(φ3) for any sequence {tn} of (0,∞),
∑∞

n=1(tn−φ(tn)) < ∞ implies
∑∞

n=1 tn

< ∞.

Let ϕ(t) = t−φ(t). Then ϕ : [0,∞) → [0,∞) is a nondecreasing function

satisfying (ϕ1) ∼ (ϕ3). Thus from Theorem 2.1 we have the next corollary.
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Corollary 2.6. Let (X, d) be a Smyth-complete quasi-metric space and

let F : X → C(X) be set-valued map satisfying

for each x, y ∈ X and u ∈ Fx, there exists an v ∈ Fy such that

d(u, v) ≤ φ(d(x, y)).

Then F has a fixed point in X.

By Corollary 2.5, we have the following corollary.

Corollary 2.7. Let (X, d) be a Smyth-complete quasi-metric space. If

f : X → X is a map satisfying

for each x, y ∈ X,

d(fx, fy) ≤ φ(d(x, y)),

then f has a unique fixed point in X.

Remark 2.2. In Corollary 2.2 ∼ Corollary 2.5, if we have ϕ(t) = t−φ(t)

then conclusions are still satisfied.

In particular, if we have ϕ(t) = t − kt for some 0 ≤ k < 1 in Corollary

2.4[resp. Corollary 2.5] then we have Nadler’s fixed point theorem(Corollary

2.8)[resp. Banach’s fixed point theorem(Corollary 2.9)] in quasi metric

spaces.

Corollary 2.8. Let (X, d) be a Smyth-complete quasi-metric space and

let F : X → C(X) be a set-valued map. If there exists a k ∈ [0, 1) such that

for each x, y ∈ X

Hd(Fx, Fy) ≤ kd(x, y),

then F has a fixed point in X.

Corollary 2.9. Let (X, d) be a Smyth-complete quasi-metric space and

let f : X → X be a map. If there exists a k ∈ [0, 1) such that, for each

x, y ∈ X

d(fx, fy) ≤ kd(x, y),

then f has a unique fixed point, p ∈ X and for each x ∈ X

limn→∞ d(p, fn(x)) = 0.
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Theorem 2.10. Let (X, d) be a Smyth-complete quasi-metric

space and F : X → K(X) be a weakly contractive set-valued map and let p ∈
Fp. If xn+1 ∈ Fxn with d(p, xn+1) = d(p, Fxn), then limn→∞ d(p, xn) = 0

with the following error estimate:

d(p, xn+1) ≤ d(p, x1)−
n∑

k=1

ϕ(d(p, xk)).

Proof. By assumpution, we have

d(p, xn+1)

= d(p, Fxn)

≤ Hd(Fp, Fxn)

≤ d(p, xn)− ϕ(d(p, xn))

≤ d(p, xn−1)− ϕ(d(p, xn−1))− ϕ(d(p, xn))

· · ·

≤ d(p, x1)−
n∑

k=1

ϕ(d(p, xk)).

We now show that limn→∞ d(p, xn) = 0.

Since the sequence {d(p, xn)} is nonincreasing, there exists an l ≥ 0 such

that

lim
n→∞

d(p, xn) = l.

If l > 0 then we have

d(p, xn+1) ≤ d(p, xn)− ϕ(d(p, xn)) ≤ d(p, xn)− ϕ(l)

and so

d(p, xn+N+1) ≤ d(p, xn)−Nϕ(l),

which is a contradiction for N large enough. Thus l = 0 and limn→∞ d(p,

xn) = 0. ¤
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