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BOUNDARY CONTROLLABILITY OF SEMILINEAR

NEUTRAL EVOLUTION SYSTEMS

Jong Yeoul Park and Jae Ug Jeong

Abstract. In this paper, we investigate the boundary control of semi-
linear neutral evolution systems with a nonlocal condition by using the
Banach fixed point theorem.

1. Introduction

Let E and U be Banach spaces with norms ∥ · ∥ and | · |, respectively. Let
σ be a linear closed and densely defined operator in E and let τ be a linear
operator with domain in E and range in some Banach space X.

We consider the following boundary control of semilinear neutral evolution
systems with nonlocal condition:

d

dt
[y(t) + g(t, y(t))] = σy(t) + f(t, y(t)), t ∈ [0, T ],(1.1)

τy(t) = B1u(t),

y(0) + h(t1, t2, . . . , tp, y(·)) = y0,

where 0 < t1 < t2 < · · · < tp ≤ T . The operator B1 : U → X is a linear
continuous operator, the control function u ∈ L1(0, T ;U), a Banach space of
admissible control functions with U , f : [0, T ]×E → E and h : [0, T ]p×E → E
are given functions. The symbol h(t1, t2, . . . , tp, y(·)) is used in the sense that
in the place of · we can substitute only elements of the set {t1, t2, . . . , tp}. For
example, h(t1, t2, . . . , tp, y(·)) can be defined by the formula

h(t1, t2, . . . , tp, y(·)) = c1y(t1) + c2y(t2) + · · ·+ cpy(tp),

where ci (i = 1, 2, . . . , p) are given constants.
Dauer and Mahmudov [4] proved the existence of mild solutions to semi-

linear neutral evolution equations with nonlocal conditions. Benchohra and
Ntouyes [3] consider the nonlocal Cauchy problems for neutral functional dif-
ferential and integrodifferential inclusions in Banach spaces. Han and Park [5]
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studied the boundary controllability of semilinear systems with nonlocal condi-
tion. Balachandran and Anandhi [1] investigated the boundary controllability
of delay integrodifferential systems in Banach space. Recently, Balachandran,
Anandhi and Dauer [2] established the sufficient conditions for the boundary
controllability of various types of nonlinear Sobolev-type systems including in-
tegrodifferential systems in Banach spaces.

The purpose of this paper is to study the boundary control of semilinear
neutral evolution systems with nonlocal condition (1.1). This paper is organized
as follows: In Section 2 we give some notations, hypotheses and definitions. In
Section 3 we state the main result. In Section 4 we give some applications to
illustrate our result.

2. Preliminaries

In this section, we describe necessary notations, hypotheses and definitions
for the proof of the main theorem.

Let A : E → E be the linear operator defined by

D(A) = {y ∈ D(σ) : τy = 0}, Ay = σy for y ∈ D(A).

For the existence of a solution of (1.1), we need the following hypotheses:
(H1) D(σ) ⊂ D(τ) and the restriction of τ to D(σ) is continuous relative to

graph norm of D(σ).
(H2) The operator A is the infinitesimal generator of a C0-semigroup S(t),

t ≥ 0, satisfying ∥S(t)∥L(E) ≤ L1 and ∥AS(t)∥L(E) ≤ L2.
(H3) There exists a linear continuous operator B : U → E such that

σB ∈ L(U,E), τ(Bu) = B1u for all u ∈ U,

Bu is continuously differentiable,

∥Bu∥ ≤ C∥B1u∥X for all u ∈ U,

where C is some positive constant.
(H4) For all t ∈ [0, T ] and u ∈ U , S(t)Bu ∈ D(A). Moreover, there exists a

positive function γ ∈ L1(0, T ) such that

∥AS(t)B∥L(U,E) ≤ γ(t) a.e. t ∈ (0, T ).

(H5) The linear operator W : L2(J, U)/Ker(W ) → E defined by

Wu =

∫ T

0

S(T − s)[AS(T − s)− S(T − s)σ]Bu(s)ds

has an invertible operator W̃−1 defined on L2(J, U)/Ker W and there exists
L3 > 0 such that ∥W−1∥ ≤ L3.

(H6) The function f : [0, T ] × E → E is continuous in t and there exists a
constant L4 > 0 such that

∥f(t, y)− f(t, z)∥ ≤ L4∥y − z∥
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for t ∈ [0, T ], y, z ∈ Br, where Br = {y : ∥y∥ ≤ r} ⊂ E.
(H7) The function g : [0, T ] × E → E is continuous in t and there exist

constants L5, L6 > 0 such that

∥g(t, y)− g(t, z)∥ ≤ L5∥y − z∥,
∥g(t, y)∥ ≤ L6∥y∥

for t ∈ [0, T ] and y, z ∈ Br.
(H8) The function h : [0, T ]p × E → E and there exists a constant L7 > 0

such that

∥h(t1, . . . , tp, z1(·))− h(t1, . . . , tp, z2(·))∥ ≤ L7 sup
t∈[0,T ]

∥z1(t)− z2(t)∥

for z1, z2 ∈ C([0, T ];Br).
In terms A and B the system (1.1) can be written as follows:

d

dt
[y(t) + g(t, y(t))] = Az(t) + σBu(t) + f(t, y(t)), t ∈ [0, T ],(2.1)

y(t) = z(t) +Bu(t),

y(0) + h(t1, . . . , tp, y(·)) = y0.

If u is continuously differentiable on [0, T ], then z can be defined as a mild
solution to the following problem:

d

dt
[z(t) + g(t, y(t))] = Az(t) + σBu(t)−Bu′(t) + f(t, y(t)),

z(0) = y0 − h(t1, . . . , tp, y(0))−Bu(0).

Thus, in this way we may define the solution y to the system (1.1) by the
variation of constant formula

y(t) = S(t)[y0 − h(t1, . . . , tp, y(·))−Bu(0) + g(0, y0)]

+Bu(t)−
∫ t

0

AS(t− s)g(s, y(s))ds

+

∫ t

0

S(t− s)[σBu(s)−Bu′(s) + f(s, y(s))]ds.(2.2)

Because the differentiability of the controller u represents an unrealistic and
severe requirement, we are led to extend the concept of the solution to (1.1) for
the general inputs u ∈ L2(0, T ;U). Integrating by parts in (2.2) with hypothesis
(H4) we obtain

y(t) = S(t)[y0 − h(t1, . . . , tp, y(·)) + g(0, y0)]

−
∫ t

0

AS(t− s)g(s, y(s))ds−
∫ t

0

AS(t− s)Bu(s)ds

+

∫ t

0

S(t− s)(σBu(s) + f(s, y(s)))ds,(2.3)
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which is well defined. In addition, it is called a mild solution of the system
(1.1).

Definition 2.1. The system (1.1) is said to be controllable on the interval
[0, T ] if for every y0, a ∈ E, there exists a control u ∈ L2([0, T ];U) such that
the solution y(·) of (1.1) satisfies y(T ) = a.

Define the linear operator W from L2(J, U) into E by

Wu =

∫ T

0

[AS(T − s)− S(T − s)σ]Bu(s)ds,

then we can check that the operator W is well defined. We desire to transfer
the nonlinear system (2.1) from y(0) = y0 − h(t1, . . . , tp, y(·)) to y(T ) = a.

3. A main result

Theorem 3.1. If the hypotheses (H1)-(H8), then the system (1.1) is control-
lable on [0, T ] provided

L1L7 + L1L4T + L2L5T + (L2 + L1∥σ∥)∥B∥L3{
L7T + L2L5T + L1L4T

}
= k, 0 < k < 1.

Proof. Using the invertible operator W̃ , for arbitrary function y(·) we define
the control

u(t) = W̃−1

{
a− S(T )[y0 − h(t1, . . . , tp, y(·)) + g(0, y0)]

+

∫ T

0

AS(T − s)g(s, y(s))ds−
∫ T

0

S(T − s)f(s, y(s))ds

}
(t).

Now, using this control, we show that operator Ψ defined in the following has
a fixed point. Define the operator Ψ on C([0, T ];Br) by

(Ψw)(t)

= S(t)[y0 − h(t1, . . . , tp, w(·)) + g(0, y0)]−
∫ t

0

AS(t− s)g(s, w(s))ds

−
∫ t

0

[AS(t− s)− S(t− s)σ]BW̃−1

{
a− S(T )[y0 − h(t1, . . . , tp, w(·))

+ g(0, y0)] +

∫ T

0

AS(T − τ)g(τ, w(τ))dτ

−
∫ T

0

S(T − τ)f(τ, w(τ))dτ

}
(s)ds+

∫ t

0

S(t− s)f(s, w(s))ds.(2.4)

First of all, we show that Ψ maps C([0, T ];Br) into itself. By hypotheses, there

exists M > 0 such that
∫ T
0
γ(t)dt ≤ M and we can choose M1,M2,M3 > 0
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such that

M1 = max
s∈[0,T ]

∥f(s, 0)∥, M2 = max
s∈[0,T ]

∥g(s, 0)∥, M3 = max
w∈C([0,t];Br)

g(0, w).

Also, because w(·) in h is continuous on [0, T ], we take

M4 = max
w∈C([0,T ];Br)

∥h(t1, . . . , tp, w(·))∥.

From (2.4) we have

∥(Ψw)(t)∥
≤ ∥S(t)y0∥+ ∥S(t)h(t1, . . . , tp, w(·))∥+ ∥S(t)g(0, y0)∥

+ ∥
∫ t

0

AS(t− s)g(s, w(s))∥+ ∥
∫ t

0

[AS(t− s)− S(t− s)σ]BW̃−1

{
a

− S(T )[y0 − h(t1, . . . , tp, w(·)) + g(0, y0)]

+

∫ T

0

AS(T − τ)g(τ, w(τ))dτ −
∫ T

0

S(T − τ)f(τ, w(τ))dτ

}
(s)ds∥

+ ∥
∫ t

0

S(t− τ)f(s, w(s))ds∥

≤ L1∥y0∥+ L1M4 + L1M3 + L2

∫ t

0

[
∥g(s, w(s))− g(s, 0)∥+ ∥g(s, 0)∥

]
ds

+

∫ t

0

[
∥AS(t− s)B∥L(U,E) + L1∥σB∥

]
∥W̃−1∥

{
[∥a∥+ L1∥y0∥+ L1M4

+ L1M3 + L2

∫ T

0

[
∥g(τ, w(τ))− g(τ, 0)∥+ ∥g(τ, 0)∥

]
dτ

+ L1

∫ T

0

[
∥f(τ, w(τ))− f(τ, 0)∥+ ∥f(τ, 0)∥

]
dτ

}
(s)ds

+ L1

∫ t

0

[
∥f(s, w(s))− f(s, 0)∥+ ∥f(s, 0)∥

]
ds

≤ L1∥y0∥+ L1M4 + L1M3 + L2TL5r + L2M2T +

[
MT + L1T∥σB∥

]
L3

{
∥a∥

+ L1∥y0∥+ L1M4 + L1M3 + L1L4Tr + L1TM1 + L2L5Tr + L2TM2

}
+ L1L4Tr + L1TM1.

Thus Ψ maps C([0, T ];Br) into itself.
Now we show that Ψ is a contraction on C([0, T ];Br).
Indeed,

∥(Ψw)(t)− (Ψw̃)(t)∥
≤ ∥S(t)∥|h(t1, . . . , tp, w(·))− h(t1, . . . , tp, w̃(·))∥



710 JONG YEOUL PARK AND JAE UG JEONG

+

∫ t

0

∥AS(t− s)∥∥g(s, w(s))− g(s, w̃(s))∥ds

+

∫ t

0

∥
[
AS(t− s)− S(t− s)σ

]
B∥∥W̃−1∥

{
∥h(t1, . . . , tp, w(·))

− h(t1, . . . , tp, w̃(·))∥+
∫ T

0

∥AS(t− τ)∥∥g(τ, w(τ))− g(τ, w̃(τ))∥dτ

+

∫ T

0

∥S(T − τ)∥∥f(τ, w(τ))− f(τ, w̃(τ))∥dτ
}
(s)ds

+

∫ t

0

∥S(t− s)∥∥f(s, w(s))− f(s, w̃(s))∥ds

≤ L1L7 sup
t∈[0,T ]

∥w(t)− w̃(t)∥+ L2L5

∫ t

0

∥w(s)− w̃(s)∥ds

+ (L2 + L1∥σ∥)∥B∥∥W̃−1∥
∫ t

0

{
L7 sup

t∈[0,T ]

∥w(t)− w̃(t)∥

+

∫ t

0

L2L5∥w(τ)− w̃(τ)∥dτ +
∫ T

0

L1L4∥w(τ)− w̃(τ)∥dτ
}
(s)ds

+ L1L4

∫ t

0

∥w(s)− w̃(s)∥ds

≤
[
L1L7 + L2L5T + (L2 + L1∥σ∥)∥B∥L3

{
L7T + L2L5T + L1L4T

}
+ L1L4T

]
sup
t∈[0,T ]

∥w(t)− w̃(t)∥ = k sup
t∈[0,T ]

∥w(t)− w̃(t)∥,

where k = L1L7 + L2L5T + (L2 + L1∥σ∥)∥B∥L3

(
L7T + L2L5T + L1L4T

)
+

L1L4T . Because 0 < k < 1, the operator Ψ is a contraction on C([0, T ];Br).
Applying the Banach fixed point theorem we get a unique fixed point for ψ in
C([0, T ], Br) and this point is the mild solution of the system (1.1). Conse-
quently, the system (1.1) is controllable on [0, T ]. □

4. An application

Let Ω be a bounded and open subset of Rn with a sufficiently smooth bound-
ary Γ of class C∞. We consider the boundary control neutral evolution system:

∂

∂t
[y(t, x) + g(t, y(t))] = △y(t) + f(t, y(t)) in Q = (0, T )× Ω,(4.1)

y(t, 0) = u(t, 0) on Σ = (0, T )× Γ,

y(0, x) + h(y(T ∗, x)) = y0(x) for x ∈ Ω, T ∗ ∈ [0, T ],
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where u ∈ L2(Σ), y0 ∈ L2(Ω), f ∈ L2(Q) and g ∈ L2(Q). Moreover, we assume
that the functions f, g, h are satisfied the following conditions:

∥f(t, y)− f(t, z)∥ ≤ c1∥y − z∥, t ∈ [0, T ],

∥g(t, y)− g(t, z)∥ ≤ c2∥y − z∥, t ∈ [0, T ],

∥g(t, y)| ≤ c3∥y∥, t ∈ [0, T ]

and

∥h(w1(T
∗, x))− h(w2(T

∗, x))∥ ≤ c4 sup
t∈[0,T ]

∥w1(t)− w2(t)∥,

where c1, c2, c3, c4 are positive constants, y, z ∈ Br and w1, w2 ∈ C([0, T ], Br).
To formulate this as a boundary control system of the form (1.1) we define

E = L2(Ω), X = H− 1
2 (Γ), U = L2(Γ) B1 = I, D(σ) = {y ∈ L2(Ω) : △y ∈

L2(Ω)} and σ = △. The operator τ is the trace operator τy = y|Γ which is

well defined and belong to H− 1
2 (Γ) for each y ∈ D(σ). The operator A is given

by

A = △, D(A) = H1(Ω) ∩H2(Ω).

To verify (H3) and (H4) we define the linear operator B : U(L2(Γ)) → L2(Ω)
by Bu = wu, where wu ∈ L2(Ω) is the unique solution to the Dirichlet boundary
value problem:

△wu = 0 in Ω,

wu = u in Γ.

In other words,∫
Ω

wu△ψdx =

∫
Γ

u
∂ψ

∂ν
dx for all ψ ∈ H1

0 (Ω) ∩H2(Ω).(4.2)

Here ∂ψ
∂ν denotes the outward derivative of ψ which is well defined as an element

of H
1
2 (Γ). By (4.2), it follows by a standard argument that

∥wu∥L2(Ω) ≤ C∥u∥
H− 1

2 (Γ)
for all u ∈ H− 1

2 (Γ),(4.3)

∥wu∥H1(Ω) ≤ C∥u∥
H

1
2 (Γ)

for all u ∈ H
1
2 (Γ).(4.4)

The inequality (4.3) implies the hypothesis (H3).
Next it follows by an interpolation argument involving estimates (4.3) and

(4.4) that (see [6])

∥AS(t)B∥L(L2(Γ),L2(Γ)) ≤ Ct−
3
4 for all t > 0.

And the hypothesis (H4) holds with γ(t) = Ct−
3
4 . Thus all the conditions

stated in Theorem 3.1 are satisfied if we take k(0 < k < 1). Therefore the
system (4.1) is controllable on [0, T ].
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5. Conclusions

We have studied the boundary control of semilinear neutral evolution sys-
tems with a nonlocal condition, which is new and allow us to develop the
boundary controllability of various impulsive neutral evolution systems. An
application is provided to illustrate the applicability of the new result. The
result presented in this paper extend and improve the corresponding ones an-
nounced by Han and Park [5], Balachandran and Anandhi [1], Balachandran,
Anandhi and Dauer [2], and others.
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