• Title/Summary/Keyword: Bacterial causes

Search Result 278, Processing Time 0.028 seconds

Use of Fish Oil Nanoencapsulated with Gum Arabic Carrier in Low Fat Probiotic Fermented Milk

  • Moghadam, Farideh Vahid;Pourahmad, Rezvan;Mortazavi, Ali;Davoodi, Daryoush;Azizinezhad, Reza
    • Food Science of Animal Resources
    • /
    • v.39 no.2
    • /
    • pp.309-323
    • /
    • 2019
  • Fish oil consists of omega-3 fatty acids which play an important role in human health. Its susceptibility to oxidation causes considerable degradation during the processing and storage of food products. Accordingly, encapsulation of this ingredient through freeze drying was studied with the aim of protecting it against environmental conditions. Gum arabic (GA) was used as the wall material for fish oil nanoencapsulation where tween 80 was applied as the emulsifier. A water-in-oil (W/O) emulsion was prepared by sonication, containing 6% fish oil dispersed in aqueous solutions including 20% and 25% total wall material. The emulsion was sonicated at 24 kHz for 120 s. The emulsion was then freeze-dried and the nanocapsules were incorporated into probiotic fermented milk, with the effects of nanocapsules examined on the milk. The results showed that the nanoparticles encapsulated with 25% gum arabic and 4% emulsifier had the highest encapsulation efficiency (EE) (87.17%) and the lowest surface oil (31.66 mg/100 kg). Using nanoencapsulated fish oil in fermented milk significantly (p<0.05) increased the viability of Lactobacillus plantarum as well as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) contents. The fermented milk sample containing fish oil nanoencapsulated with 25% wall material and 4% emulsifier yielded the greatest probiotic bacterial count (8.41 Log CFU/mL) and the lowest peroxide value (0.57 mEq/kg). Moreover, this sample had the highest EPA and DHA contents. Utilizing this nanoencapsulated fish oil did not adversely affect fermented milk overall acceptance. Therefore, it can be used for fortification of low fat probiotic fermented milk.

Evaluation of Selective Media Containing Iron Source and Alpha-Glucosidase Substrates for Enterobacter sakazakii (Cronobacter spp.) Detection

  • Chon, Jung-Whan;Seo, Kun-Ho;Yim, Jin-Hyeok;Bae, Dongryeoul;Kim, Binn;Kim, Tae-Jin;Jeong, Dongkwan;Song, Kwang-Young
    • Journal of Dairy Science and Biotechnology
    • /
    • v.39 no.1
    • /
    • pp.9-19
    • /
    • 2021
  • Enterobacter sakazakii (Cronobacter spp.) causes meningitis, necrotizing enterocolitis, sepsis, and bacteremia in neonates and children and has a high mortality rate. For rapid E. sakazakii detection, various differential and selective media containing α-glucosidase substrates, such as 5-bromo-4-chloro-3-indolyl-α-D-glucopyranoside (BCIG) or 4-methylumbelliferyl-α-D-glucoside (α-MUG), have been developed as only E. sakazakii exhibits α-glucosidase activity in the genus Enterobacter. However, Escherichia vulneris (family: Enterobacteriaceae) can also utilize α-glucosidase substrates, thereby resulting in false positives. Various iron sources are known to promote the growth of gram-negative bacteria. This study aimed to develop a selective medium containing α-glucosidase substrates for E. sakazakii detection that would eliminate false positives, such as those of E. vulneris, and to determine the role of iron source in the medium. Three previously developed (TPD) media, i.e., Oxoid, OK, and VRBG, and the medium developed in this study, i.e., NGTE, were evaluated using 58 E. sakazakii and 5 non-E. sakazakii strains. Fifty-four E. sakazakii strains appeared as fluorescent or chromogenic colonies on all four media that were assessed. Two strains showed colonies on NGTE medium and not on TPD media. In contrast, the remaining two strains showed colonies on TPD media and not on NGTE medium. None of the non-E. sakazakii strains showed fluorescent or chromogenic colonies on any of the evaluated media except E. vulneris, which showed colonies on TPD media and not on NGTE medium. This study demonstrated that the newly developed NGTE medium was not only equally efficient in promoting the growth of bacterial colonies when compared with the currently available media but also eliminated false positives, such as E. vulneris.

Green Synthesis of Copper Nano-Drug and Its Dental Application upon Periodontal Disease-Causing Microorganisms

  • El-Rab, Sanaa M.F. Gad;Basha, Sakeenabi;Ashour, Amal A.;Enan, Enas Tawfik;Alyamani, Amal Ahmed;Felemban, Nayef H.
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.12
    • /
    • pp.1656-1666
    • /
    • 2021
  • Dental pathogens lead to chronic diseases like periodontitis, which causes loss of teeth. Here, we examined the plausible antibacterial efficacy of copper nanoparticles (CuNPs) synthesized using Cupressus macrocarpa extract (CME) against periodontitis-causing bacteria. The antimicrobial properties of CME-CuNPs were then assessed against oral microbes (M. luteus. B. subtilis, P. aerioginosa) that cause periodontal disease and were identified using morphological/ biochemical analysis, and 16S-rRNA techniques. The CME-CuNPs were characterized, and accordingly, the peak found at 577 nm using UV-Vis spectrometer showed the formation of stable CME-CuNPs. Also, the results revealed the formation of spherical and oblong monodispersed CME-CuNPs with sizes ranged from 11.3 to 22.4 nm. The FTIR analysis suggested that the CME contains reducing agents that consequently had a role in Cu reduction and CME-CuNP formation. Furthermore, the CME-CuNPs exhibited potent antimicrobial efficacy against different isolates which was superior to the reported values in literature. The antibacterial efficacy of CME-CuNPs on oral bacteria was compared to the synergistic solution of clindamycin with CME-CuNPs. The solution exhibited a superior capacity to prevent bacterial growth. Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and fractional inhibitory concentration (FIC) of CME-CuNPs with clindamycin recorded against the selected periodontal disease-causing microorganisms were observed between the range of 2.6-3.6 ㎍/ml, 4-5 ㎍/ml and 0.312-0.5, respectively. Finally, the synergistic antimicrobial efficacy exhibited by CME-CuNPs with clindamycin against the tested strains could be useful for the future development of more effective treatments to control dental diseases.

Relationship between Obesity, Gingival Inflammation, and Periodontal Bacteria after 4-Week Weight Control Program in 20's

  • Seo, Min-Seock;Hwang, Soo-Jeong
    • Journal of dental hygiene science
    • /
    • v.22 no.2
    • /
    • pp.99-107
    • /
    • 2022
  • Background: Obesity weakens acquired immunity and causes infection. This study aimed to investigate the relationship between the inflammatory markers in the gingival crevicular fluid and serum and periodontal bacteria in saliva through obesity control for 4 weeks. Methods: Forty-six subjects with a body mass index (BMI) of ≥23 kg/m2 stayed in the camp for 4 weeks, followed by exercise and a low salt-low fat diet. Body size measurements, oral examinations, blood, saliva, and gingival crevicular fluid were collected before and after the program. C-reactive protein (CRP) in serum, matrix metalloproteinase (MMP)-8, MMP-9, and interleukin (IL)-1β in the gingival sulcus fluid were measured. After extracting bacterial genomic DNA from saliva, the presence of periodontal bacteria were detected using Taq probe. The relationship of each index before and after the program was analyzed through paired t-test and partial correlation analysis. Results: Campylobacter rectus (Cr) increased after the program, and there was no significant change in other bacteria. Serum CRP and Fusobacterium nucleatum (Fn), Aggregatibacter actinomycetemcomitans, Cr, ratio of Fn, and ratio of Cr had a positive relationship at baseline; however, the relationship was not significant after the program. Ratio of Prevotella intermedia had a positive relationship with MMP-9, MMP-8, IL-1β at baseline. Moreover, the ratio of Treponema denticola and the ratio of Tannerella forsythia showed a positive relationship with MMP-8, MMP-9, and IL-1β. The relationship between the ratio of Porphyromonas gingivalis and IL-1β showed a constant positive relationship at baseline and after the program. Conclusion: Obesity control program in subjects with a BMI of ≥23 kg/m2 accompanied by diet and exercise did not affect the changes in periodontal bacteria itself, but changes in the relationship between periodontal bacteria and serum CRP, the relationship between the inflammatory index in the gingival crevicular fluid and periodontal bacteria was observed.

4-Chloro-2-Isopropyl-5-Methylphenol Exhibits Antimicrobial and Adjuvant Activity against Methicillin-Resistant Staphylococcus aureus

  • Kim, Byung Chan;Kim, Hyerim;Lee, Hye Soo;Kim, Su Hyun;Cho, Do-Hyun;Jung, Hee Ju;Bhatia, Shashi Kant;Yune, Philip S.;Joo, Hwang-Soo;Kim, Jae-Seok;Kim, Wooseong;Yang, Yung-Hun
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.6
    • /
    • pp.730-739
    • /
    • 2022
  • Methicillin-resistant Staphylococcus aureus (MRSA) causes severe infections and poses a global healthcare challenge. The utilization of novel molecules which confer synergistical effects to existing MRSA-directed antibiotics is one of the well-accepted strategies in lieu of de novo development of new antibiotics. Thymol is a key component of the essential oil of plants in the Thymus and Origanum genera. Despite the absence of antimicrobial potency, thymol is known to inhibit MRSA biofilm formation. However, the anti-MRSA activity of thymol analogs is not well characterized. Here, we assessed the antimicrobial activity of several thymol derivatives and found that 4-chloro-2-isopropyl-5-methylphenol (chlorothymol) has antimicrobial activity against MRSA and in addition it also prevents biofilm formation. Chlorothymol inhibited staphyloxanthin production, slowed MRSA motility, and altered bacterial cell density and size. This compound also showed a synergistic antimicrobial activity with oxacillin against highly resistant S. aureus clinical isolates and biofilms associated with these isolates. Our results demonstrate that chlorinated thymol derivatives should be considered as a new lead compound in anti-MRSA therapeutics.

High-throughput sequencing-based metagenomic and transcriptomic analysis of intestine in piglets infected with salmonella

  • KyeongHye, Won;Dohyun, Kim;Donghyun, Shin;Jin, Hur;Hak-Kyo, Lee;Jaeyoung, Heo;Jae-Don, Oh
    • Journal of Animal Science and Technology
    • /
    • v.64 no.6
    • /
    • pp.1144-1172
    • /
    • 2022
  • Salmonella enterica serovar Typhimurium isolate HJL777 is a virulent bacterial strain in pigs. The high rate of salmonella infection are at high risk of non-typhoidal salmonella gastroenteritis development. Salmonellosis is most common in young pigs. We investigated changes in gut microbiota and biological function in piglets infected with salmonella via analysis of rectal fecal metagenome and intestinal transcriptome using 16S rRNA and RNA sequencing. We identified a decrease in Bacteroides and increase in harmful bacteria such as Spirochaetes and Proteobacteria by microbial community analysis. We predicted that reduction of Bacteroides by salmonella infection causes proliferation of salmonella and harmful bacteria that can cause an intestinal inflammatory response. Functional profiling of microbial communities in piglets with salmonella infection showed increasing lipid metabolism associated with proliferation of harmful bacteria and inflammatory responses. Transcriptome analysis identified 31 differentially expressed genes. Using gene ontology and Innate Immune Database analysis, we identified that BGN, DCN, ZFPM2 and BPI genes were involved in extracellular and immune mechanisms, specifically salmonella adhesion to host cells and inflammatory responses during infection. We confirmed alterations in gut microbiota and biological function during salmonella infection in piglets. Our findings will help prevent disease and improve productivity in the swine industry.

Construction and immunization with double mutant ΔapxIBD Δpnp forms of Actinobacillus pleuropneumoniae serotypes 1 and 5

  • Dao, Hoai Thu;Truong, Quang Lam;Do, Van Tan;Hahn, Tae-Wook
    • Journal of Veterinary Science
    • /
    • v.21 no.2
    • /
    • pp.20.1-20.13
    • /
    • 2020
  • Actinobacillus pleuropneumoniae (APP) causes a form of porcine pleuropneumonia that leads to significant economic losses in the swine industry worldwide. The apxIBD gene is responsible for the secretion of the ApxI and ApxII toxins and the pnp gene is responsible for the adaptation of bacteria to cold temperature and a virulence factor. The apxIBD and pnp genes were deleted successfully from APP serotype 1 and 5 by transconjugation and sucrose counter-selection. The APP1ΔapxIBDΔpnp and APP5ΔapxIBDΔpnp mutants lost hemolytic activity and could not secrete ApxI and ApxII toxins outside the bacteria because both mutants lost the ApxI- and ApxII-secreting proteins by deletion of the apxIBD gene. Besides, the growth of these mutants was defective at low temperatures resulting from the deletion of pnp. The APP1ΔapxIBDΔpnp and APP5ΔapxIBDΔpnp mutants were significantly attenuated compared with wild-type ones. However, mice vaccinated intraperitoneally with APP5ΔapxIBDΔpnp did not provide any protection when challenged with a 10-times 50% lethal dose of virulent homologous (APP5) and heterologous (APP1) bacterial strains, while mice vaccinated with APP1ΔapxIBDΔpnp offered 75% protection against a homologous challenge. The ΔapxIBDΔpnp mutants were significantly attenuated and gave different protection rate against homologous virulent wild-type APP challenging.

Colonization of Pathogens in Earphones and Observation of Effective Sterilization Methods and Cycles

  • Kwon, Hyeokjin;Jeong, Myeongguk;Go, Shinjee;Kim, Yeojin;Kim, Yein;Kim, Yeeun;Roh, Seungjun;Lee, Seonggwang;Choi, Go-Eun
    • Biomedical Science Letters
    • /
    • v.28 no.3
    • /
    • pp.186-191
    • /
    • 2022
  • The use of earphones has recently been widely used around the world. In currently, students wear earphones a lot in a daily life. The types of earphones are open-earphones, Canalphones, and headphones. Many students don't periodically to sterilization their earphones. Therefore, it can be an incubator that can induced ear infections. The objective of this study was to detect the pathogenic bacteria from the earphones used by the students. A total of 3 type earphones swabs were collected by sterile cotton swabs. The swabs were inoculated onto BHI agar and incubated aerobically 48 hour at 37℃. 16s rRNA PCR, electrophoresis and sequencing were performed to confirm the identification of all the bacterial isolates. As a result, 24 pathogens were identified in sequencing. Three types of earphones were sterilized in three ways: ultraviolet (UV), 70% ethyl alcohol, and antibacterial wet tissue. If you use earphones for a long time without disinfecting them for a long time, it causes various diseases such as external ear infections. The findings of this study the users periodically to sterilization their respective earphones.

Biocontrol of Maize Diseases by Microorganisms (미생물을 활용한 옥수수병의 생물학적 방제)

  • Jung-Ae, Kim;Jeong-Sup, Song;Min-Hye, Jeong;Sook-Young, Park;Yangseon, Kim
    • Research in Plant Disease
    • /
    • v.28 no.4
    • /
    • pp.195-203
    • /
    • 2022
  • Zea mays, known as maize or corn, is a major staple crop and an important source of energy for humans and animals, thus ensuring global food security. Approximately 9.4% of the loss of total annual corn production is caused by pathogens including fungi, bacteria, and viruses, resulting in economic losses. Although the use of fungicides is one of the most common strategies to control corn diseases, the frequent use of fungicides causes various health problems in humans and animals. In order to overcome this problem, an eco-friendly control strategy has recently emerged as an alternative way. One such eco-friendly control strategy is the use of beneficial microorganisms in the control of plant pathogens. The beneficial microorganisms can control the plant pathogens in various ways, such as spatial competition with plant pathogens, inhibition of fungal or bacterial growth via the production of secondary metabolites or antibiotics, and direct attack to plant pathogens via enzyme activity. Here, we reviewed microorganisms as biocontrol agents against corn diseases.

Molecular and Phenotypic Investigation on Antibacterial Activities of Limonene Isomers and Its Oxidation Derivative against Xanthomonas oryzae pv. oryzae

  • Hyeonbin Kim;Mi Hee Kim;Ui-Lim Choi;Moon-Soo Chung;Chul-Ho Yun;Youngkun Shim;Jaejun Oh;Sungbeom Lee;Gun Woong Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.562-569
    • /
    • 2024
  • Xanthomonas oryzae pv. oryzae (Xoo) causes a devastating bacterial leaf blight in rice. Here, the antimicrobial effects of ᴰ-limonene, ᴸ-limonene, and its oxidative derivative carveol against Xoo were investigated. We revealed that carveol treatment at ≥ 0.1 mM in liquid culture resulted in significant decrease in Xoo growth rate (> 40%) in a concentration-dependent manner, and over 1 mM, no growth was observed. The treatment with ᴰ-limonene and ᴸ-limonene also inhibited the Xoo growth but to a lesser extent compared to carveol. These results were further elaborated with the assays of motility, biofilm formation and xanthomonadin production. The carveol treatment over 1 mM caused no motilities, basal level of biofilm formation (< 10%), and significantly reduced xanthomonadin production. The biofilm formation after the treatment with two limonene isomers was decreased in a concentration-dependent manner, but the degree of the effect was not comparable to carveol. In addition, there was negligible effect on the xanthomonadin production mediated by the treatment of two limonene isomers. Field emission-scanning electron microscope (FE-SEM) unveiled that all three compounds used in this study cause severe ultrastructural morphological changes in Xoo cells, showing shrinking, shriveling, and holes on their surface. Moreover, quantitative real-time PCR revealed that carveol and ᴰ-limonene treatment significantly down-regulated the expression levels of genes involved in virulence and biofilm formation of Xoo, but not with ᴸ-limonene. Together, we suggest that limonenes and carveol will be the candidates of interest in the development of biological pesticides.