Browse > Article
http://dx.doi.org/10.4014/jmb.2203.03054

4-Chloro-2-Isopropyl-5-Methylphenol Exhibits Antimicrobial and Adjuvant Activity against Methicillin-Resistant Staphylococcus aureus  

Kim, Byung Chan (Department of Biological Engineering, College of Engineering, Konkuk University)
Kim, Hyerim (College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University)
Lee, Hye Soo (Department of Biological Engineering, College of Engineering, Konkuk University)
Kim, Su Hyun (Department of Biological Engineering, College of Engineering, Konkuk University)
Cho, Do-Hyun (Department of Biological Engineering, College of Engineering, Konkuk University)
Jung, Hee Ju (Department of Biological Engineering, College of Engineering, Konkuk University)
Bhatia, Shashi Kant (Department of Biological Engineering, College of Engineering, Konkuk University)
Yune, Philip S. (Division of Infectious Diseases, Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine)
Joo, Hwang-Soo (Department of Biotechnology, College of Engineering, Duksung Women's University)
Kim, Jae-Seok (Department of Laboratory Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine)
Kim, Wooseong (College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University)
Yang, Yung-Hun (Department of Biological Engineering, College of Engineering, Konkuk University)
Publication Information
Journal of Microbiology and Biotechnology / v.32, no.6, 2022 , pp. 730-739 More about this Journal
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) causes severe infections and poses a global healthcare challenge. The utilization of novel molecules which confer synergistical effects to existing MRSA-directed antibiotics is one of the well-accepted strategies in lieu of de novo development of new antibiotics. Thymol is a key component of the essential oil of plants in the Thymus and Origanum genera. Despite the absence of antimicrobial potency, thymol is known to inhibit MRSA biofilm formation. However, the anti-MRSA activity of thymol analogs is not well characterized. Here, we assessed the antimicrobial activity of several thymol derivatives and found that 4-chloro-2-isopropyl-5-methylphenol (chlorothymol) has antimicrobial activity against MRSA and in addition it also prevents biofilm formation. Chlorothymol inhibited staphyloxanthin production, slowed MRSA motility, and altered bacterial cell density and size. This compound also showed a synergistic antimicrobial activity with oxacillin against highly resistant S. aureus clinical isolates and biofilms associated with these isolates. Our results demonstrate that chlorinated thymol derivatives should be considered as a new lead compound in anti-MRSA therapeutics.
Keywords
MRSA; thymol derivatives; chlorothymol; antimicrobial; synergistic effect; biofilm;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Selvaraj A, Valliammai A, Muthuramalingam P, Priya A, Suba M, Ramesh M, et al. 2020. Carvacrol targets SarA and CrtM of methicillin-resistant Staphylococcus aureus to mitigate biofilm formation and staphyloxanthin synthesis: an in vitro and in vivo approach. ACS Omega 5: 31100-31114.   DOI
2 Chan PF, Foster SJ. 1998. Role of SarA in virulence determinant production and environmental signal transduction in Staphylococcus aureus. Am. Soc. Microbiol. 23: 6232-6241.
3 Queck SY, Jameson-Lee M, Villaruz AE, Bach THL, Khan BA, Sturdevant DE, et al. 2008. RNAIII-independent target gene control by the agr quorum-sensing system: insight into the evolution of virulence regulation in Staphylococcus aureus. Mol. Cell 32: 150-158.   DOI
4 Shang Wei Wu, de Lencastre H, Tomasz A. 2001. Recruitment of the mecA gene homologue of Staphylococcus sciuri into a resistance determinant and expression of the resistant phenotype in Staphylococcus aureus. J. Bacteriol. 183: 2417-2424.   DOI
5 Xue L, Chen YY, Yan Z, Lu W, Wan D, Zhu H. 2019. Staphyloxanthin: a potential target for antivirulence therapy. Infect. Drug Res. 12: 2151-2160.   DOI
6 Alanis AJ. 2005. Resistance to antibiotics: Are we in the post-antibiotic era? Arch. Med. Res. 36: 697-705.   DOI
7 Imperial ICVJ, Ibana JA. 2016. Addressing the antibiotic resistance problem with probiotics: reducing the risk of its double-edged sword effect. Front. Microbiol. 7: 1983.   DOI
8 Verhoef J, Beaujean D, Blok H, Baars A, Meyler A, van der Werken C, et al. 1999. A Dutch approach to methicillin-resistant Staphylococcus aureus. Eur. J. Clin. Microbiol. Infect. Dis. 18: 461-466.   DOI
9 Pantosti A, Venditti M. 2009. What is MRSA? Eur. Resp. J. 34: 1190-1196.   DOI
10 Diep BA, Otto M. 2008. The role of virulence determinants in community-associated MRSA pathogenesis. Trends Microbiol. 16: 361-369.   DOI
11 Otto M. 2012. MRSA virulence and spread. Cell. Microbiol. 14: 1513-1521.   DOI
12 Wilke MS, Lovering AL, Strynadka NCJ. 2005. β-Lactam antibiotic resistance: a current structural perspective. Curr. Opin. Microbiol. 8: 525-533.   DOI
13 Khatoon Z, McTiernan CD, Suuronen EJ, Mah T-F, Alarcon EI, Alarcon Bacterial EI. 2018. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon 4: e01067.   DOI
14 Holt DC, Holden MTG, Tong SYC, Castillo-Ramirez S, Clarke L, Quail MA, et al. 2011. A very early-branching staphylococcus aureus lineage lacking the carotenoid pigment staphyloxanthin. Genome Biol. Evol. 3: 881-895.   DOI
15 Song HS, Bhatia SK, Choi TR, Gurav R, Kim HJ, Lee SM, et al. 2021. Increased antibiotic resistance of methicillin-resistant Staphylococcus aureus USA300 Δpsm mutants and a complementation study of Δpsm mutants using synthetic phenol-soluble modulins. J. Microbiol. Biotechnol. 31: 115-122.   DOI
16 Botelho MG. 2020. Fractional inhibitory concentration index of combinations of antibacterial agents against cariogenic organisms. J. Dent. 28: 565-570.   DOI
17 Cui H, Zhang C, Li C, Lin L. 2020. Inhibition mechanism of cardamom essential oil on methicillin-resistant Staphylococcus aureus biofilm. LWT 122: 109057.   DOI
18 Winterbourn CC, Kettle AJ, Hampton MB. 2016. Reactive oxygen species and neutrophil function. Ann. Rev. Biochem. 85: 765-792.   DOI
19 Xue L, Chen YY, Yan Z, Lu W, Wan D, Zhu H. 2019. Staphyloxanthin: a potential target for antivirulence therapy. Infect. Drug Res. 12: 2151-2160.   DOI
20 Pollitt EJG, Crusz SA, Diggle SP. 2015. Staphylococcus aureus forms spreading dendrites that have characteristics of active motility. Sci. Rep. 5: 17698.   DOI
21 Cheung GYC, Joo HS, Chatterjee SS, Otto M. 2014. Phenol-soluble modulins - critical determinants of staphylococcal virulence. FEMS Microbiol. Rev. 38: 698-719.   DOI
22 Marchese A, Orhan IE, Daglia M, Barbieri R, di Lorenzo A, Nabavi SF, et al. 2016. Antibacterial and antifungal activities of thymol: a brief review of the literature. Food Chem. 210: 402-414.   DOI
23 Kachur K, Suntres Z. 2020. The antibacterial properties of phenolic isomers, carvacrol and thymol. Crit. Rev. Food Sci. Nutr. 60: 3042-3053.   DOI
24 Salehi B, Mishra AP, Shukla I, Sharifi-Rad M, Contreras M del M, Segura-Carretero A, et al. 2018. Thymol, thyme, and other plant sources: health and potential uses. Phytother. Res. 32: 1688-1706.   DOI
25 Pollitt EJG, Diggle SP. 2017. Defining motility in the Staphylococci. Cell. Mol. Life Sci. 74: 2943-2958.   DOI
26 Miyake Y, Iwai1 T, Sugai M, Miura1 K, Suginaka H, Nagasaka1 N. 1991. Incidence and characterization of Staphylococcus aureus from the tongues of children. J. Dent. Res. 70: 1045-1047.   DOI
27 Peacock SJ, Paterson GK. 2015. Mechanisms of methicillin resistance in Staphylococcus aureus. Ann. Rev. Biochem. 84: 577-601.   DOI
28 Valliammai A, Selvaraj A, Yuvashree U, Aravindraja C, Karutha Pandian S. 2020. sarA-dependent antibiofilm activity of thymol enhances the antibacterial efficacy of rifampicin against Staphylococcus aureus. Front. Microbiol. 11: 1744.   DOI
29 Lee HS, Song HS, Lee HJ, Kim SH, Suh MJ, Cho JY, et al. 2021. Comparative study of the difference in behavior of the accessory gene regulator (agr) in USA300 and USA400 community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA). J. Microbiol. Biotechnol. 31: 1060-1068.   DOI
30 Peters BM, Ward RM, Rane HS, Lee SA, Noverr MC. 2013. Efficacy of ethanol against Candida albicans and Staphylococcus aureus polymicrobial biofilms. Antimicrob. Agents Chemother. 57: 74-82.   DOI
31 Park YL, Bhatia SK, Gurav R, Choi TR, Kim HJ, Song HS, et al. 2020. Fructose based hyper production of poly-3-hydroxybutyrate from Halomonas sp. YLGW01 and impact of carbon sources on bacteria morphologies. Int. J. Biol. Macromol. 154: 929-936.   DOI
32 Kim SM, Zou G, Kim H, Kang M, Ahn S, Heo HY, et al. 2022. Antimicrobial activity of the membrane-active compound nTZDpa is enhanced at low pH. Biomed. Pharmacother. 150: 112977.   DOI
33 Kim W, Zou G, Hari TPA, Wilt IK, Zhu W, Galle N, et al. 2019. A selective membrane-targeting repurposed antibiotic with activity against persistent methicillin-resistant Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 116: 16529-16534.   DOI
34 Oussalah M, Caillet S, Saucier L, Lacroix M. 2007. Inhibitory effects of selected plant essential oils on the growth of four pathogenic bacteria: E. coli O157:H7, Salmonella Typhimurium, Staphylococcus aureus and Listeria monocytogenes. Food Control 18: 414-420.   DOI
35 Choi TR, Song HS, Han YH, Park YL, Park JY, Yang SY, et al. 2020. Enhanced tolerance to inhibitors of Escherichia coli by heterologous expression of cyclopropane-fatty acid-acyl-phospholipid synthase (cfa) from Halomonas socia. Bioprocess Biosys. Eng. 43: 909-918.   DOI
36 Boswihi SS, Udo EE. 2018. Methicillin-resistant Staphylococcus aureus?: an update on the epidemiology, treatment options and infection control. Curr. Med. Res. Pract. 8: 18-24.   DOI
37 Cuny C, Wieler LH, Witte W. 2015. Livestock-associated MRSA: the impact on humans. Antibiotics 4: 521-543.   DOI
38 Yamamoto T, Nishiyama A, Takano T, Yabe S, Higuchi W, Razvina O, et al. 2010. Community-acquired methicillin-resistant Staphylococcus aureus: community transmission, pathogenesis, and drug resistance. J. Infect. Chemother. 16: 225-254.   DOI
39 Cascioferro S, Carbone D, Parrino B, Pecoraro C, Giovannetti E, Cirrincione G, et al. 2021. Therapeutic strategies to counteract antibiotic resistance in MRSA biofilm-associated infections. ChemMedChem. 16: 65-80.   DOI
40 Dharmaraja AT. 2017. Role of Reactive Oxygen Species (ROS) in therapeutics and drug resistance in cancer and bacteria. J. Med. Chem. 60: 3221-3240.   DOI
41 Phitaktim S, Chomnawang M, Sirichaiwetchakoon K, Dunkhunthod B, Hobbs G, Eumkeb G. 2016. Synergism and the mechanism of action of the combination of α-mangostin isolated from Garcinia mangostana L. and oxacillin against an oxacillin-resistant Staphylococcus saprophyticus. BMC Microbiol. 16: 195.   DOI
42 Kowalczyk A, Przychodna M, Sopata S, Bodalska A, Fecka I. 2020. Thymol and thyme essential oil-new insights into selected therapeutic applications. Molecules 25: 4125.   DOI
43 Valliammai A, Selvaraj A, Muthuramalingam P, Priya A, Ramesh M, Pandian SK. 2021. Staphyloxanthin inhibitory potential of thymol impairs antioxidant fitness, enhances neutrophil mediated killing and alters membrane fluidity of methicillin resistant Staphylococcus aureus. Biomed. Pharmacother. 141: 111933.   DOI
44 Blot SI, Vandewoude KH, Hoste EA, Colardyn FA. 2002. Outcome and attributable mortality in critically Ill patients with bacteremia involving methicillin-susceptible and methicillin-resistant Staphylococcus aureus. Arch. Intern. Med 162: 2229-35.   DOI
45 Muthukrishnan G, Masters EA, Daiss JL, Schwarz EM. 2019. Mechanisms of immune evasion and bone tissue colonization that make Staphylococcus aureus the primary pathogen in osteomyelitis. Curr. Osteoporo. Rep. 17: 395-404.   DOI
46 Tsompanidou E, Denham EL, Becher D, de Jong A, Buist G, van Oosten M, et al. 2013. Distinct roles of phenol-soluble modulins in spreading of Staphylococcus aureus on wet surfaces. Appl. Environ. Microbiol. 79: 886-895.   DOI
47 Chao S, Young G, Oberg C, Nakaoka K. 2008. Inhibition of methicillin-resistant Staphylococcus aureus (MRSA) by essential oils. Flavour Fragr. J. 23: 444-449.   DOI
48 Meletiadis J, Pournaras S, Roilides E, Walsh TJ. 2010. Defining fractional inhibitory concentration index cutoffs for additive interactions based on self-drug additive combinations, Monte Carlo simulation analysis, and in vitro-in vivo correlation data for antifungal drug combinations against Aspergillus fumigatus. Antimicrob. Agents Chemother. 54: 602-609.   DOI
49 Nemati M, Hermans K, Devriese LA, Maes D, Haesebrouck F. 2009. Screening of genes encoding adhesion factors and biofilm formation in Staphylococcus aureus isolates from poultry. Avian Pathol. 38: 513-517.   DOI
50 Zheng Y, Joo HS, Nair V, Le KY, Otto M. 2018. Do amyloid structures formed by Staphylococcus aureus phenol-soluble modulins have a biological function? Int. J. Med. Microbiol. 308: 675-682.   DOI