Browse > Article
http://dx.doi.org/10.5187/jast.2022.e73

High-throughput sequencing-based metagenomic and transcriptomic analysis of intestine in piglets infected with salmonella  

KyeongHye, Won (Department of Animal Biotechnology, College of Agricultural and Life Sciences, Jeonbuk National University)
Dohyun, Kim (Department of Animal Biotechnology, College of Agricultural and Life Sciences, Jeonbuk National University)
Donghyun, Shin (Department of Agricultural Convergence Technology, Jeonbuk National University)
Jin, Hur (Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University)
Hak-Kyo, Lee (Department of Animal Biotechnology, College of Agricultural and Life Sciences, Jeonbuk National University)
Jaeyoung, Heo (Department of Animal Biotechnology, College of Agricultural and Life Sciences, Jeonbuk National University)
Jae-Don, Oh (Department of Animal Biotechnology, College of Agricultural and Life Sciences, Jeonbuk National University)
Publication Information
Journal of Animal Science and Technology / v.64, no.6, 2022 , pp. 1144-1172 More about this Journal
Abstract
Salmonella enterica serovar Typhimurium isolate HJL777 is a virulent bacterial strain in pigs. The high rate of salmonella infection are at high risk of non-typhoidal salmonella gastroenteritis development. Salmonellosis is most common in young pigs. We investigated changes in gut microbiota and biological function in piglets infected with salmonella via analysis of rectal fecal metagenome and intestinal transcriptome using 16S rRNA and RNA sequencing. We identified a decrease in Bacteroides and increase in harmful bacteria such as Spirochaetes and Proteobacteria by microbial community analysis. We predicted that reduction of Bacteroides by salmonella infection causes proliferation of salmonella and harmful bacteria that can cause an intestinal inflammatory response. Functional profiling of microbial communities in piglets with salmonella infection showed increasing lipid metabolism associated with proliferation of harmful bacteria and inflammatory responses. Transcriptome analysis identified 31 differentially expressed genes. Using gene ontology and Innate Immune Database analysis, we identified that BGN, DCN, ZFPM2 and BPI genes were involved in extracellular and immune mechanisms, specifically salmonella adhesion to host cells and inflammatory responses during infection. We confirmed alterations in gut microbiota and biological function during salmonella infection in piglets. Our findings will help prevent disease and improve productivity in the swine industry.
Keywords
Piglet; Salmonella; Metagenome; Transcriptome; Small intestines;
Citations & Related Records
Times Cited By KSCI : 13  (Citation Analysis)
연도 인용수 순위
1 Jacobson A, Lam L, Rajendram M, Tamburini F, Honeycutt J, Pham T, et al. A gut commensal-produced metabolite mediates colonization resistance to Salmonella infection. Cell Host Microbe. 2018;24:296-307.E7. https://doi.org/10.1016/j.chom.2018.07.002   DOI
2 Burrough ER. Intestinal Salmonellosis in Pigs [Internet]. MSD MANUAL Veterinary Manual. 2021 [cited 2022 Jun 7]. https://www.msdvetmanual.com/digestive-system/intestinaldiseases-in-pigs/intestinal-salmonellosis-in-pigs
3 Lim SH, Methe BA, Knoll BM, Morris A, Obaro SK. Invasive non-typhoidal Salmonella in sickle cell disease in Africa: is increased gut permeability the missing link? J Transl Med. 2018;16:239. https://doi.org/10.1186/s12967-018-1622-4   DOI
4 Kelesidis T. The cross-talk between spirochetal lipoproteins and immunity. Front Immunol. 2014;5:310. https://doi.org/10.3389/fimmu.2014.00310   DOI
5 Cullen PA, Haake DA, Adler B. Outer membrane proteins of pathogenic spirochetes. FEMS Microbiol Rev. 2004;28:291-318. https://doi.org/10.1016/j.femsre.2003.10.004   DOI
6 Rizzatti G, Lopetuso LR, Gibiino G, Binda C, Gasbarrini A. Proteobacteria: a common factor in human diseases. BioMed Res Int. 2017;2017:9351507. https://doi.org/10.1155/2017/9351507   DOI
7 Sun J, Du L, Li XL, Zhong H, Ding Y, Liu Z, et al. Identification of the core bacteria in rectums of diarrheic and non-diarrheic piglets. Sci Rep. 2019;9:18675. https://doi.org/10.1038/s41598-019-55328-y   DOI
8 Gevers D, Knight R, Petrosino JF, Huang K, McGuire AL, Birren BW, et al. The Human Microbiome Project: a community resource for the healthy human microbiome. PLOS Biol. 2012;10:e1001377. https://doi.org/10.1371/journal.pbio.1001377   DOI
9 Shin NR, Whon TW, Bae JW. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015;33:496-503. https://doi.org/10.1016/j.tibtech.2015.06.011   DOI
10 Garrett WS, Lord GM, Punit S, Lugo-Villarino G, Mazmanian SK, Ito S, et al. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell. 2007;131:33-45. https://doi.org/10.1016/j.cell.2007.08.017   DOI
11 Frese SA, Parker K, Chris Calvert CC, Mills DA. Diet shapes the gut microbiome of pigs during nursing and weaning. Microbiome. 2015;3:28. https://doi.org/10.1186/s40168-015-0091-8   DOI
12 Wilson MR, Zha L, Balskus EP. Natural product discovery from the human microbiome. J Biol Chem. 2017;292:8546-52. https://doi.org/10.1074/jbc.R116.762906   DOI
13 You JS, Yong JH, Kim GH, Moon S, Nam KT, Ryu JH, et al. Commensal-derived metabolites govern Vibrio cholerae pathogenesis in host intestine. Microbiome. 2019;7:132. https://doi.org/10.1186/s40168-019-0746-y   DOI
14 Muns R, Nuntapaitoon M, Tummaruk P. Non-infectious causes of pre-weaning mortality in piglets. Livest Sci. 2016;184:46-57. https://doi.org/10.1016/j.livsci.2015.11.025   DOI
15 Rotimi SO, Ojo DA, Talabi OA, Balogun EA, Ademuyiwa O. Tissue dyslipidemia in Salmonella-infected rats treated with amoxillin and pefloxacin. Lipids Health Dis. 2012;11:152. https://doi.org/10.1186/1476-511X-11-152   DOI
16 Borri PF, Op den Velde WM, Hooghwinkel GJM, Bruyn GW. Biochemical studies in Huntington's chorea. VI. Composition of striatal neutral lipids, phospholipids, glycolipids, fatty acids, and amino acids. Neurology. 1967;17:172. https://doi.org/10.1212/WNL.17.2.172   DOI
17 Luo X, Cheng C, Tan Z, Li N, Tang M, Yang L, et al. Emerging roles of lipid metabolism in cancer metastasis. Mol Cancer. 2017;16:76. https://doi.org/10.1186/s12943-017-0646-3   DOI
18 Branda SS, Vik S, Friedman L, Kolter R. Biofilms: the matrix revisited. Trends Microbiol. 2005;13:20-6. https://doi.org/10.1016/j.tim.2004.11.006   DOI
19 Paoletti L, Lu YJ, Schujman GE, de Mendoza D, Rock CO. Coupling of fatty acid and phospholipid synthesis in Bacillus subtilis. J Bacteriol. 2007;189:5816-24. https://doi.org/10.1128/JB.00602-07   DOI
20 Swinnen JV, Van Veldhoven PP, Timmermans L, De Schrijver E, Brusselmans K, Vanderhoydonc F, et al. Fatty acid synthase drives the synthesis of phospholipids partitioning into detergent-resistant membrane microdomains. Biochem Biophys Res Commun. 2003;302:898-903. https://doi.org/10.1016/S0006-291X(03)00265-1   DOI
21 Jonas K, Tomenius H, Kader A, Normark S, Romling U, Belova LM, et al. Roles of curli, cellulose and BapA in Salmonella biofilm morphology studied by atomic force microscopy. BMC Microbiol. 2007;7:70. https://doi.org/10.1186/1471-2180-7-70   DOI
22 Ledeboer NA, Jones BD. Exopolysaccharide sugars contribute to biofilm formation by Salmonella enterica Serovar Typhimurium on HEp-2 cells and chicken intestinal epithelium. J Bacteriol. 2005;187:3214-26. https://doi.org/10.1128/JB.187.9.3214-3226.2005   DOI
23 Prouty AM, Gunn JS. Comparative analysis of Salmonella enterica serovar Typhimurium biofilm formation on gallstones and on glass. Infect Immun. 2003;71:7154-8. https://doi.org/10.1128/IAI.71.12.7154-7158.2003   DOI
24 Austin JW, Sanders G, Kay WW, Collinson SK. Thin aggregative fimbriae enhance Salmonella enteritidis biofilm formation. FEMS Microbiol Lett. 1998;162:295-301. https://doi.org/10.1111/j.1574-6968.1998.tb13012.x   DOI
25 Barak JD, Jahn CE, Gibson DL, Charkowski AO. The role of cellulose and O-antigen capsule in the colonization of plants by Salmonella enterica. Mol Plant Microbe Interact. 2007;20:1083-91. https://doi.org/10.1094/MPMI-20-9-1083   DOI
26 Pickard JM, Zeng MY, Caruso R, Nunez G. Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev. 2017;279:70-89. https://doi.org/10.1111/imr.12567   DOI
27 Barak JD, Gorski L, Naraghi-Arani P, Charkowski AO. Salmonella enterica virulence genes are required for bacterial attachment to plant tissue. Appl Environ Microbiol. 2005;71:5685-91. https://doi.org/10.1128/AEM.71.10.5685-5691.2005   DOI
28 Adcox HE, Vasicek EM, Dwivedi V, Hoang KV, Turner J, Gunn JS. Salmonella extracellular matrix components influence biofilm formation and gallbladder colonization. Infect Immun. 2016;84:3243-51. https://doi.org/10.1128/IAI.00532-16   DOI
29 Wiedemann A, Virlogeux-Payant I, Chausse AM, Schikora A, Velge P. Interactions of Salmonella with animals and plants. Front Microbiol. 2015;5:791. https://doi.org/10.3389/fmicb.2014.00791   DOI
30 Fallon JR, McNally EM. Non-glycanated biglycan and LTBP4: leveraging the extracellular matrix for Duchenne Muscular Dystrophy therapeutics. Matrix Biol. 2018;68-69:616-27. https://doi.org/10.1016/j.matbio.2018.02.016   DOI
31 The Weizmann Institute of Science. GeneCards Suite databases [Internet]. The Weizmann Institute of Science. 1996 [cited 2022 Jul 7]. https://www.genecards.org/
32 Schaefer L, Babelova A, Kiss E, Hausser HJ, Baliova M, Krzyzankova M, et al. The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages. J Clin Invest. 2005;115:2223-33. https://doi.org/10.1172/JCI23755   DOI
33 Babelova A, Moreth K, Tsalastra-Greul W, Zeng-Brouwers J, Eickelberg O, Young MF, et al. Biglycan, a danger signal that activates the NLRP3 inflammasome via Toll-like and P2X receptors. J Biol Chem. 2009;284:24035-48. https://doi.org/10.1074/jbc.M109.014266   DOI
34 Zhao H, Xi H, Wei B, Cai A, Wang T, Wang Y, et al. Expression of decorin in intestinal tissues of mice with inflammatory bowel disease and its correlation with autophagy. Exp Ther Med. 2016;12:3885-92. https://doi.org/10.3892/etm.2016.3908   DOI
35 Hu L, Duan Y, Li J, Su L, Yan M, Zhu Z, et al. Biglycan enhances gastric cancer invasion by activating FAK signaling pathway. Oncotarget. 2014;5:1885-96. https://doi.org/10.18632/oncotarget.1871   DOI
36 Xing X, Gu X, Ma T, Ye H. Biglycan up-regulated vascular endothelial growth factor (VEGF) expression and promoted angiogenesis in colon cancer. Tumor Biol. 2015;36:1773-80. https://doi.org/10.1007/s13277-014-2779-y   DOI
37 Zhang W, Ge Y, Cheng Q, Zhang Q, Fang L, Zheng J. Decorin is a pivotal effector in the extracellular matrix and tumour microenvironment. Oncotarget. 2018;9:5480-91. https://doi.org/10.18632/oncotarget.23869   DOI
38 Liu H, He Z, Simon HU. Protective role of autophagy and autophagy-related protein 5 in early tumorigenesis. J Mol Med. 2015;93:159-64. https://doi.org/10.1007/s00109-014-1241-3   DOI
39 Bi X, Pohl NM, Qian Z, Yang GR, Gou Y, Guzman G, et al. Decorin-mediated inhibition of colorectal cancer growth and migration is associated with E-cadherin in vitro and in mice. Carcinogenesis. 2012;33:326-30. https://doi.org/10.1093/carcin/bgr293   DOI
40 Rakhra G, Rakhra G. Zinc finger proteins: insights into the transcriptional and post transcriptional regulation of immune response. Mol Biol Rep. 2021;48:5735-43. https://doi.org/10.1007/s11033-021-06556-x   DOI
41 Elsbach P. The bactericidal/permeability-increasing protein (BPI) in antibacterial host defense. J Leukoc Biol. 1998;64:14-8. https://doi.org/10.1002/jlb.64.1.14   DOI
42 Papamichalis P, Argyraki K, Papamichalis M, Loukopoulos A, Dalekos GN, Rigopoulou EI. Salmonella enteritidis infection complicated by acute myocarditis: a case report and review of the literature. Cardiol Res Pract. 2011;2011:574230. https://doi.org/10.4061/2011/574230   DOI
43 Qi SY, Li Y, Szyroki A, Giles IG, Moir A, O'Connor CD. Salmonella typhimurium responses to a bactericidal protein from human neutrophils. Mol Microbiol. 1995;17:523-31. https://doi.org/10.1111/j.1365-2958.1995.mmi_17030523.x   DOI
44 Kong Q, Yang J, Liu Q, Alamuri P, Roland KL, Curtiss R 3rd. Effect of deletion of genes involved in lipopolysaccharide core and O-antigen synthesis on virulence and immunogenicity of Salmonella enterica serovar typhimurium. Infect Immun. 2011;79:4227-39. https://doi.org/10.1128/IAI.05398-11   DOI
45 Ortiz D, Siegal EM, Kramer C, Khandheria BK, Brauer E. Nontyphoidal cardiac salmonellosis: two case reports and a review of the literature. Tex Heart Inst J. 2014;41:401-6. https://doi.org/10.14503/THIJ-13-3722   DOI
46 Brice J, Baumard S, Loeb F, Brasme L, Jaussaud R, N'Guyen Y. Salmonella enteritidis infection complicated by acute myocarditis. Med Mal Infect. 2013;43:248-50. https://doi.org/10.1016/j.medmal.2013.05.002   DOI
47 Schwartz KJ. Salmonellosis in swine. Compend Contin Educ Pract Vet. 1991;13:139-46.
48 Varley MA. The neonatal pig: development and survival. Wallingford: CAB International; 1995.
49 Wales AD, Cook AJC, Davies RH. Producing Salmonella-free pigs: a review focusing on interventions at weaning. Vet Rec. 2011;168:267-76. https://doi.org/10.1136/vr.d1125   DOI
50 Kim PG, Ha YJ, Lee SM, Kim SW, Gal SW. Immune responses of BALB/c mice administrated via oral route to a combined Salmonella typhimurium ghost vaccine. J Life Sci. 2015;25:1197-203. https://doi.org/10.5352/JLS.2015.25.11.1197   DOI
51 Isaacson R, Kim HB. The intestinal microbiome of the pig. Anim Health Res Rev. 2012;13:100-9. https://doi.org/10.1017/S1466252312000084   DOI
52 Freeman TC, Ivens A, Baillie JK, Beraldi D, Barnett MW, Dorward D, et al. A gene expression atlas of the domestic pig. BMC Biol. 2012;10:90. https://doi.org/10.1186/1741-7007-10-90   DOI
53 Canny GO, McCormick BA. Bacteria in the intestine, helpful residents or enemies from within? Infect Immun. 2008;76:3360-73. https://doi.org/10.1128/IAI.00187-08   DOI
54 Hur J, Lee JH. Immunization of pregnant sows with a novel virulence gene deleted live Salmonella vaccine and protection of their suckling piglets against salmonellosis. Vet Microbiol. 2010;143:270-6. https://doi.org/10.1016/j.vetmic.2009.11.034   DOI
55 Nash AK, Auchtung TA, Wong MC, Smith DP, Gesell JR, Ross MC, et al. The gut mycobiome of the Human Microbiome Project healthy cohort. Microbiome. 2017;5:153. https://doi.org/10.1186/s40168-017-0373-4   DOI
56 Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335-6. https://doi.org/10.1038/nmeth.f.303   DOI
57 Sokal RR. The principles and practice of numerical taxonomy. Taxon. 1963;12:190-9. https://doi.org/10.2307/1217562   DOI
58 DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72:5069-72. https://doi.org/10.1128/AEM.03006-05   DOI
59 Rognes T, Flouri T, Nichols B, Quince C, Mahe F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584. https://doi.org/10.7717/peerj.2584   DOI
60 Sneath PHA, Sokal RR. Numerical taxonomy: the principles and practice of numerical classification. 1973.
61 Drancourt M, Bollet C, Carlioz A, Martelin R, Gayral JP, Raoult D. 16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates. J Clin Microbiol. 2000;38:3623-30. https://doi.org/10.1128/JCM.38.10.3623-3630.2000   DOI
62 Navas-Molina JA, Peralta-Sanchez JM, Gonzalez A, McMurdie PJ, Vazquez-Baeza Y, Xu Z, et al. Advancing our understanding of the human microbiome using QIIME. In: DeLong EF, editor. Methods in enzymology. San Diego, CA: Academic Press; 2013. p. 371-444.
63 Hughes JB, Hellmann JJ, Ricketts TH, Bohannan BJM. Counting the uncountable: statistical approaches to estimating microbial diversity. Appl Environ Microbiol. 2001;67:4399-406. https://doi.org/10.1128/AEM.67.10.4399-4406.2001   DOI
64 Chiarucci A, Bacaro G, Rocchini D, Fattorini L. Discovering and rediscovering the samplebased rarefaction formula in the ecological literature. Community Ecol. 2008;9:121-3. https://doi.org/10.1556/ComEc.9.2008.1.14   DOI
65 Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923-30. https://doi.org/10.1093/bioinformatics/btt656   DOI
66 Shin D, Chang SY, Bogere P, Won KH, Choi JY, Choi YJ, et al. Beneficial roles of probiotics on the modulation of gut microbiota and immune response in pigs. PLOS ONE. 2019;14:e0220843. https://doi.org/10.1371/journal.pone.0220843   DOI
67 Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013;31:814-21. https://doi.org/10.1038/nbt.2676   DOI
68 Parks DH, Tyson GW, Hugenholtz P, Beiko RG. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics. 2014;30:3123-4. https://doi.org/10.1093/bioinformatics/btu494   DOI
69 Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNAseq data with DESeq2. Genome Biol. 2014;15:550. https://doi.org/10.1186/s13059-014-0550-8   DOI
70 Wang J, Duncan D, Shi Z, Zhang B. WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013. Nucleic Acids Res. 2013;41:W77-83. https://doi.org/10.1093/nar/gkt439   DOI
71 Mazaya B, Hamzawy MA, Khalil MAF, Tawkol WM, Sabit H. Immunomodulatory and antimicrobial efficacy of Lactobacilli against enteropathogenic infection of Salmonella typhi: in-vitro and in-vivo study. Int J Immunopathol Pharmacol. 2015;28:469-78. https://doi.org/10.1177/0394632015592099   DOI
72 Iji PA, Saki A, Tivey DR. Body and intestinal growth of broiler chicks on a commercial starter diet. 3. Development and characteristics of tryptophan transport. Br Poult Sci. 2001;42:523-9. https://doi.org/10.1080/00071660120073160   DOI
73 Drumo R, Pesciaroli M, Ruggeri J, Tarantino M, Chirullo B, Pistoia C, et al. Salmonella enterica Serovar Typhimurium exploits inflammation to modify swine intestinal microbiota. Front Cell Infect Microbiol. 2016;5:106. https://doi.org/10.3389/fcimb.2015.00106   DOI
74 Suo C, Yin Y, Wang X, Lou X, Song D, Wang X, et al. Effects of Lactobacillus plantarum ZJ316 on pig growth and pork quality. BMC Vet Res. 2012;8:89. https://doi.org/10.1186/1746-6148-8-89   DOI
75 Thomsen LE, Bach Knudsen KE, Hedemann MS, Roepstorff A. The effect of dietary carbohydrates and Trichuris suis infection on pig large intestine tissue structure, epithelial cell proliferation and mucin characteristics. Vet Parasitol. 2006;142:112-22. https://doi.org/10.1016/j.vetpar.2006.05.032   DOI
76 D'Andrea A, Galderisi M, Sciomer S, Nistri S, Agricola E, Ballo P, et al. Echocardiographic evaluation of the athlete's heart: from morphological adaptations to myocardial function. G Ital Cardiol (Rome). 2009;10:533-44.
77 Pollock J, Gally DL, Glendinning L, Tiwari R, Hutchings MR, Houdijk JGM. Analysis of temporal fecal microbiota dynamics in weaner pigs with and without exposure to enterotoxigenic Escherichia coli1,2. J Anim Sci. 2018;96:3777-90. https://doi.org/10.1093/jas/sky260   DOI
78 Arguello H, Estelle J, Zaldivar-LOpez S, Jimenez-Marin A, Carvajal A, LOpez-BascOn MA, et al. Early Salmonella Typhimurium infection in pigs disrupts Microbiome composition and functionality principally at the ileum mucosa. Sci Rep. 2018;8:7788. https://doi.org/10.1038/s41598-018-26083-3   DOI
79 Guevarra RB, Lee JH, Lee SH, Seok MJ, Kim DW, Kang BN, et al. Piglet gut microbial shifts early in life: causes and effects. J Anim Sci Biotechnol. 2019;10:1. https://doi.org/10.1186/s40104-018-0308-3   DOI