Browse > Article
http://dx.doi.org/10.5423/RPD.2022.28.4.195

Biocontrol of Maize Diseases by Microorganisms  

Jung-Ae, Kim (Department of Research and Development, Center for Industrialization of Agriculture and Livestock Microorganisms)
Jeong-Sup, Song (Department of Research and Development, Center for Industrialization of Agriculture and Livestock Microorganisms)
Min-Hye, Jeong (Department of Plant Medicine, Suncheon National University)
Sook-Young, Park (Department of Plant Medicine, Suncheon National University)
Yangseon, Kim (Department of Research and Development, Center for Industrialization of Agriculture and Livestock Microorganisms)
Publication Information
Research in Plant Disease / v.28, no.4, 2022 , pp. 195-203 More about this Journal
Abstract
Zea mays, known as maize or corn, is a major staple crop and an important source of energy for humans and animals, thus ensuring global food security. Approximately 9.4% of the loss of total annual corn production is caused by pathogens including fungi, bacteria, and viruses, resulting in economic losses. Although the use of fungicides is one of the most common strategies to control corn diseases, the frequent use of fungicides causes various health problems in humans and animals. In order to overcome this problem, an eco-friendly control strategy has recently emerged as an alternative way. One such eco-friendly control strategy is the use of beneficial microorganisms in the control of plant pathogens. The beneficial microorganisms can control the plant pathogens in various ways, such as spatial competition with plant pathogens, inhibition of fungal or bacterial growth via the production of secondary metabolites or antibiotics, and direct attack to plant pathogens via enzyme activity. Here, we reviewed microorganisms as biocontrol agents against corn diseases.
Keywords
Biocontrol; Disease management; Maize disease; Microorganisms;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Budi, S. W., van Tuinen, D., Arnould, C., Dumans-Gaudot, E., Gianinazzi-Pearson, V. and Gianinazzi, S. 2000. Hydrolytic enzyme activity of PaeniBacillus sp. strain B2 and effects of th antagonistic bacterium on cell integrity of two soil-borne pathogenic fungi. Appl. Soil Ecol. 15: 191-199.   DOI
2 Castro del Angel, E., Sanchez Arizpe, A., Galindo Cepeda, M. E. and Vazquez Badillo, M. E. 2020. Biological control of ear rot on maize genotypes with Trichoderma species. Rev. Bio. Cienc. 7: e965.
3 Chandra Nayaka, C., Uday Shankar, A. C., Reddy, M. S., Niranjana, S. R., Prakash, H. S., Shetty, H. S. et al. 2009. Control of Fusarium verticillioides, cause of ear rot of maize, by Pseudomonas fluorescens. Pest. Manag. Sci. 65: 769-775.   DOI
4 Chandra Nayaka, S., Niranjana, S. R., Uday Shankar, A. C., Niranjan Raj, S., Reddy, M. S., Prakash, H. S. et al. 2010. Seed biopriming with novel strain of Trichoderma harzianum for the control of toxigenic Fusarium verticillioides and fumonisins in maize. Arch. Phytopathol. Plant Prot. 43: 264-282.   DOI
5 Chen, B., Han, H., Hou, J., Bao, F., Tan, H., Lou, X. et al. 2022. Control of maize sheath blight and elicit induced systemic resistance using PaeniBacillus polymyxa strain SF05. Microorganisms 10: 1318.
6 Chet, I. & Inbar, J. 1994. Biological control of fungal pathogens. Appl. Biochem. Biotechnol. 48: 37-43.   DOI
7 Compant, S., Duffy, B., Nowak, J., Clement, C. and Barka, E. A. 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 71: 4951-4959.   DOI
8 Dang, L., Li, G., Yang, Z., Luo, S., Zheng, X. and Zhang, K. 2010. Chemical constituents from the endophytic fungus Trichoderma ovalisporum isolated from Panax notoginseng. Ann. Microbiol. 60: 317-320.   DOI
9 Degani, O. and Dor, S. 2021. Trichoderma biological control to protect sensitive maize hybrids against late wilt disease in the field. J. Fungi 7: 315.
10 Djaenuddin, N., Sebayang, A., Nonci, N. and Muis, A. 2021. Compatibility of biocontrol agent formulas and synthetic fungicides in controlling maydis leaf blight on corn caused by Bipolaris maydis. IOP Conf. Ser. Earth Environ. Sci. 911: 012062.
11 Djaenuddin, N., Suriani and Muis, A. 2020. Effectiveness of Bacillus subtilis TM4 biopesticide formulation as biocontrol agent against maydis leaf blight disease on corn. IOP Conf. Ser. Earth Environ. Sci. 484: 012096.
12 Golob, P., Kutukwa, N., Devereau, A., Bartosik, R. E. and Rodriguez, J. C. 2004. Maize. In: Crop Post-harvest: Science and Technology. Vol. 2. Durables, eds. by R. Hodges and G. Farrell, pp. 26-59. Blackwell Publishing Ltd., Ames, IW, USA.
13 Fandohan, P., Hell, K., Marasas, W. F. O. and Wingfield, M. J. 2003. Infection of maize by Fusarium species and contamination with fumonisin in Africa. Afr. J. Biotechnol. 2: 570-579.   DOI
14 Figueroa-Lopez, A. M., Cordero-Ramirez, J. D., Martinez-Alvarez, J. C., Lopez-Meyer, M., Lizarraga-Sanchez, G. J., Felix-Gastelum, R. et al. 2016. Rhizospheric bacteria of maize with potential for biocontrol of Fusarium verticillioides. Springerplus 5: 330.
15 Glick, B. R. 1995. The enhancement of plant growth by free-living bacteria. Can. J. Microbiol. 41: 109-117.   DOI
16 Gruber, S., Omann, M., Rodriguez, C. E., Radebner, T. and Zeilinger, S. 2012. Generation of Trichoderma atroviride mutants with constitutively activated G protein signaling by using genetic in resistance as selection marker. BMC Res. Notes 5: 641.
17 Harman, G. E., Howell, C. R., Viterbo, A., Chet, I. and Lorito, M. 2004. Trichoderma species: opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol. 2: 43-56.   DOI
18 Heimpel, G. E. and Mills, N. J. 2017. Biological Control: Ecology and Applications. Cambridge University Press, Cambridge, UK. 386 pp.
19 Hernandez-Rodriguez, A., Heydrich-Perez, M., Acebo-Guerrero, Y., Velazquez-del Valle, M. G. and Hernandez-Lauzardo, A. N. 2008. Antagonistic activity of Cuban native rhizobacteria against Fusarium verticillioides (Sacc.) Nirenb. in maize (Zea mays L.). Appl. Soil. Ecol. 39: 180-186.   DOI
20 Hung, R., Lee, S. & Bennett, J. W. 2013. Arabidopsis thaliana as a model system for testing the effects of Trichoderma volatile organic compounds. Fungal Ecol. 6: 19-26.   DOI
21 Khosravi, A. R., Mansouri, M., Bahonar, A. R. and Shokri, H. 2007. Mycoflora of maize harvested from Iran and imported maize. Pak. J. Biol. Sci. 10: 4432-4437.   DOI
22 Isakeit, T. and Jaster, J. 2005. Texas has a new pathotype of Peronosclerospora sorghi, the cause of sorghum downy mildew. Plant Dis. 89: 529.
23 Jackson, T. A., Harveson, R. M. and Vidaver, A. K. 2007. Reemergence of Goss's wilt and blight of corn to the central high plains. Plant Health Prog. Online publication. https://doi.org/10.1094/PHP-2007-0919-0.   DOI
24 Jardine, D. J., and Claflin, L. E. 2016. Goss's bacterial wilt and leaf blight. In: Compendium of Corn Diseases, eds. by G. P. Munkvold and D. G. White, 4th ed., p. 165. APS Press, St. Paul, MN, USA.
25 Kutawa, A. B., Ahmad, K., Ali, A., Hussein, M. Z., Wahab, M. A. A. and Sijam, K. 2021. State of the art on southern corn leaf blight disease incited by Cochliobolus heterostrophus: detection, pathogenic variability and novel control measures. Bulg. J. Agric. Sci. 27: 147-155.
26 Lee, S., Hung, R., Yap, M. and Bennett, J. W. 2015. Age matters: the effects of volatile organic compounds emitted by Trichoderma atroviride on plant growth. Arch. Microbiol. 197: 723-727.   DOI
27 Lee, S., Yap, M., Behringer, G., Hung, R. and Bennett, J. W. 2016. Volatile organic compounds emitted by Trichoderma species mediate plant growth. Fungal Biol. Biotechnol. 3: 7.
28 Lerda, P., Blaggi, M. B., Peralta, N., Ychari, S., Vazquez, M. and Bosio, G. 2005. Fumonisins in foods from Cordoba (Argentina), presence and genotoxicity. Food Chem. Toxicol. 43: 691-698.   DOI
29 Li, B., Kong, L., Qiu, D., Francis, F. and Wang, S. 2021. Biocontrol potential and mode of action of entomopathogenic bacteria Xenorhabdus budapestensis C72 against Bipolaris maydis. Biol. Control 158: 104605.
30 Lopez-Mondejar, R., Ros, M. and Pascual, J. A. 2011. Mycoparasitism-related genes expression of Trichoderma harzianum isolates to evaluate their efficacy as biological control agent. Biol. Control 56: 59-66.   DOI
31 Maloy, O. C. 2005. Plant disease management. Plant Health Instr. Online publication. https://doi.org/10.1094/PHI-I-2005-0202-01.   DOI
32 Marasas, W. F. 1995. Fumonisins: their implications for human and animal health. Nat. Toxins 3: 193-198.   DOI
33 Marin, S., Homedes, V., Sanchis, V., Ramos, A. J. and Magan, N. 1999. Impact of Fusarium moniliforme and F. proliferatum colonisation of maize on calorific losses and fumonisin production under different environmental conditions. J. Stored Prod. Res. 35: 15-26.   DOI
34 Meena, B., Marimuthu, T., Vidyasekaran, P. and Velazhahan, R. 2001. Biological control of root rot of groundnut with antagonistic Pseudomonas fluorescens strains. J. Plant Dis. Prot. 108: 369-381.
35 Miedaner, T. and Juroszek, P. 2021. Global warming and increasing maize cultivation demand comprehensive efforts in disease and insect resistance breeding in north-western Europe. Plant Pathol. 70: 1032-1046.
36 Muis, A. and Quimio, A. J. 2006. Biological contorl of banded leaf and sheath blight disease (Rhizoctonia solani Kuhn) in corn with formulated Bacillus subtilis BR23. Indones. J. Agric. Sci. 7: 1-7.   DOI
37 Munkvold, G. P. 2003. Epidemiology of Fusarium diseases and their mycotoxins in maize ears. Eur. J. Plant Pathol. 109: 705-713.   DOI
38 Ons, L., Bylemans, D., Thevissen, K. and Cammue, B. P. A. 2020. Combining biocontrol agents with chemical fungicides for integrated plant fungal disease control. Microorganisms 8: 1930.
39 Pal, K. K. and Gardener, B. M. 2006. Biological control of plant pathogens. Plant Health Instr. Online publication. https://doi.org/10.1094/PHI-A-2006-1117-02.   DOI
40 Osdaghi, E., Robertson, A. E., Jackson-Ziems, T. A., Abachi, H., Li, X. and Harveson, R. M. 2022. Clavibacter nebraskensis causing Goss's wilt of maize: five decades of detaining the enemy in the new world. Mol. Plant Pathol. Online publication. https://doi.org/10.1111/mpp.13268.   DOI
41 Pechanova, O. and Pechan, T. 2015. Maize-pathogen interactions: an ongoing combat from a proteomics perspective. Int. J. Mol. Sci. 16: 28429-28448.   DOI
42 Pertot, I., Alabouvette, A., Hinarejos, E. and Franca, S. 2015. The Use of Microbial Biocontrol Agents against Soil-Borne Diseases. EpiAgri, Agriculture & Innovation, Brussels, Belgium. 11 pp.
43 Piyaboon, O. 2022. Efficacy of Chaetomium globosum as biological control agents for controlling leaf blight of corn. NU. Int. J. Sci. 19: 1-8.
44 Ragsdale, N. N., Hylin, J. W., Sisler, H. D., Witt, J. M. and Alford, H. 1991. Health and environmental factors associated with agricultural use of fungicides. USDA/States National Pesticide Impact Assessment Program Fungicide Assessment Project 117. URL http://cipm.ncsu.edu/piappud/ [8 November 2022].
45 Ruiz, N. Wielgosz-Collin, G., Poirier, L., Grovel, O., Petit, K. E., Mohamed-Benkada, M. et al. 2007. New Trichobrachins, 11-residue peptaibols from a marine strain of Trichoderma longibrachiatum. Peptides 28: 1351-1358.   DOI
46 Saravanakumar, K., Li, Y., Yu, C., Wang, Q.-Q., Wang, M., Sun, J. et al. 2017. Effect of Trichoderma harzianum on maize rhizosphere microbiome and biocontrol of Fusarium stalk rot. Sci. Rep. 7: 1771.
47 Seyi-Amole, D. O. and Onilude, A. A. 2021. Microbiological control: a new age of maize production. In: Cereal Grains, ed. by A. K. Goyal. Intech Open, London, UK.
48 Sartori, M., Nesci, A., Formento, A. and Etcheverry, M. 2015. Selection of potential biological control of Exserohilum turcicum with epiphytic microorganisms from maize. Rev. Argent. Microbiol. 47: 62-71.   DOI
49 Sartori, M., Nesci, A., Montemarani, A., Barros, G., Garcia, J. and Etcheverry, M. 2017. Preliminary evaluation of biocontrol agents against maize pathogens Exserohilum turcicum and Puccinia sorgh in field assays. Agric. Sci. 8: 1003-1013.   DOI
50 Schafer, K. S. and Kegley, S. E. 2002. Persistent toxic chemicals in the US food supply. J. Epidemiol. Community Health 56: 813-817.   DOI
51 Shahbandeh, M. 2020. Corn: statistics & Facts. URL http://www.statista.corn/#dossierSummary_chapter4/ [8 November 2022].
52 Shifa, H., Gopalakrishnan, C. and Velazhahan, R. 2015. Efficacy of Bacillus subtilis G-1 in suppression of stem rot caused by Sclerotium rolfsii and growth promotion of groundnut. Int. J. Agric. Environ. Biotechnol. 8: 111-118.
53 Shoda, M. 2002. Bacterial control of plant diseases. J. Biosci. Bioeng. 89: 515-521.   DOI
54 Sireesha, Y. and Velazhahan, R. 2015. Biological control of downy mildew of maize caused by Peronosclerospora sorghi under environmentally controlled conditions. J. Appl. Nat. Sci. 8: 279-283.   DOI
55 Sitara, U. and Akhter, S. 2007. Efficacy of fungicides, sodium hypochlorite and neem seed powder to control seed borne pathogens of maize. Pak. J. Bot. 39:285-292.
56 Stockmann-Juvala, H. and Savolainen, K. 2008. A review of the toxic effects and mechanisms of action of fumonisin B1. Hum. Exp. Toxicol. 27: 799-809.   DOI
57 Anahosur, K. H. and Patil, S. H. 1980. Chemical control of sorghum downy mildew in India. Plant Dis. 64: 1004-1006.   DOI
58 Sturz, A. and Christie, B. R. 2003. Beneficial microbial allelopathies in the root zone: the management of soil quality and plant disease with rhizobacteria. Soil Tillage Res. 72: 107-123.   DOI
59 Voss, K. A., Smith, G. W. and Haschek, W. M. 2007. Fumonisins: toxicokinetics mechanism of action and toxicity. Anim. Feed Sci. Technol. 137: 299-325.   DOI
60 Wang, M., Ma, J., Fan, L., Fu, K., Yu, C., Gao, J. et al. 2015. Biological control of southern corn leaf blight by Trichoderma atroviride SG3403. Biocontrol Sci. Technol. 25: 1133-1146.   DOI
61 Azcon-Aguilar, C. and Barea, J. M. 1997. Arbuscular mycorrhizas and biological control of soil-borne plant pathogens: an overview of the mechanisms involved. Mycorrhiza 6: 457-464.   DOI
62 Bais, H. P., Park, S.-W., Weir, T. L., Callaway, R. M. and Vivanco, J. M. 2004. How plants communicate using the underground information superhighway. Trends Plant Sci. 9: 26-32.   DOI
63 Bathke, K. J., Jochum, C. C. and Yuen, G. Y. 2022. Biological control of bacterial leaf streak of corn using systemic resistance-inducing Bacillus strains. Crop Prot. 155: 105932.
64 Berg, G., Koberl, M., Rybakova, D., Muller, H., Grosh, R. and Smalla, K. 2017. Plant microbial diversity is suggested as the key to future biocontrol and health trends. FEMS Microbiol. Ecol. 95: fix050.
65 Blacutt, A. A., Gold, S. E., Voss, K. A., Gao, M. and Glenn, A. E. 2018. Fusarium verticllioides: advancements in understanding the toxicity, virulence, and niche adaptations of a model mycotoxigenic pathogen of maize. Phytopathology 108: 312-326.   DOI
66 Bressan, W. and Figueiredo, J. E. F. 2007. Efficacy and dose-response relationship in biocontrol of Fusarium disease in maize by Streptomyces spp. Eur. J. Plant Pathol. 120: 311-316.   DOI