DOI QR코드

DOI QR Code

Construction and immunization with double mutant ΔapxIBD Δpnp forms of Actinobacillus pleuropneumoniae serotypes 1 and 5

  • Dao, Hoai Thu (College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University) ;
  • Truong, Quang Lam (College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University) ;
  • Do, Van Tan (College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University) ;
  • Hahn, Tae-Wook (College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University)
  • Received : 2019.10.16
  • Accepted : 2019.12.06
  • Published : 2020.03.31

Abstract

Actinobacillus pleuropneumoniae (APP) causes a form of porcine pleuropneumonia that leads to significant economic losses in the swine industry worldwide. The apxIBD gene is responsible for the secretion of the ApxI and ApxII toxins and the pnp gene is responsible for the adaptation of bacteria to cold temperature and a virulence factor. The apxIBD and pnp genes were deleted successfully from APP serotype 1 and 5 by transconjugation and sucrose counter-selection. The APP1ΔapxIBDΔpnp and APP5ΔapxIBDΔpnp mutants lost hemolytic activity and could not secrete ApxI and ApxII toxins outside the bacteria because both mutants lost the ApxI- and ApxII-secreting proteins by deletion of the apxIBD gene. Besides, the growth of these mutants was defective at low temperatures resulting from the deletion of pnp. The APP1ΔapxIBDΔpnp and APP5ΔapxIBDΔpnp mutants were significantly attenuated compared with wild-type ones. However, mice vaccinated intraperitoneally with APP5ΔapxIBDΔpnp did not provide any protection when challenged with a 10-times 50% lethal dose of virulent homologous (APP5) and heterologous (APP1) bacterial strains, while mice vaccinated with APP1ΔapxIBDΔpnp offered 75% protection against a homologous challenge. The ΔapxIBDΔpnp mutants were significantly attenuated and gave different protection rate against homologous virulent wild-type APP challenging.

Keywords

Acknowledgement

The authors thank Dr. Janine T. Bosse (Section of Paediatrics, Department of Medicine, Imperial College London, London, UK) for generously providing plasmids.

References

  1. Sassu EL, Bosse JT, Tobias TJ, Gottschalk M, Langford PR, Hennig-Pauka I. Update on Actinobacillus pleuropneumoniae-knowledge, gaps and challenges. Transbound Emerg Dis 2018;65 Suppl 1:72-90. https://doi.org/10.1111/tbed.12739
  2. Bosse JT, Li Y, Sarkozi R, Fodor L, Lacouture S, Gottschalk M, Casas Amoribieta M, Angen O, Nedbalcova K, Holden MT, Maskell DJ, Tucker AW, Wren BW, Rycroft AN, Langford PR; BRaDP1T consortium. Proposal of serovars 17 and 18 of Actinobacillus pleuropneumoniae based on serological and genotypic analysis. Vet Microbiol 2018;217:1-6. https://doi.org/10.1016/j.vetmic.2018.02.019
  3. Lee KE, Choi HW, Kim HH, Song JY, Yang DK. Prevalence and characterization of Actinobacillus pleuropneumoniae isolated from Korean pigs. J Bacteriol Virol 2015;45:19-25. https://doi.org/10.4167/jbv.2015.45.1.19
  4. Komal JP, Mittal KR. Grouping of Actinobacillus pleuropneumoniae strains of serotypes 1 through 12 on the basis of their virulence in mice. Vet Microbiol 1990;25:229-240. https://doi.org/10.1016/0378-1135(90)90080-F
  5. Yuan F, Liu J, Guo Y, Tan C, Fu S, Zhao J, Chen H, Bei W. Influences of ORF1 on the virulence and immunogenicity of Actinobacillus pleuropneumoniae. Curr Microbiol 2011;63:574-580. https://doi.org/10.1007/s00284-011-0016-0
  6. Frey J. Virulence in Actinobacillus pleuropneumoniae and RTX toxins. Trends Microbiol 1995;3:257-261. https://doi.org/10.1016/S0966-842X(00)88939-8
  7. Jansen R, Briaire J, Kamp EM, Gielkens AL, Smits MA. Structural analysis of the Actinobacillus pleuropneumoniae-RTX-toxin I (ApxI) operon. Infect Immun 1993;61:3688-3695. https://doi.org/10.1128/iai.61.9.3688-3695.1993
  8. Jones GH. Novel aspects of polynucleotide phosphorylase function in Streptomyces. Antibiotics (Basel) 2018;7:25. https://doi.org/10.3390/antibiotics7010025
  9. Barria C, Malecki M, Arraiano CM. Bacterial adaptation to cold. Microbiology 2013;159:2437-2443. https://doi.org/10.1099/mic.0.052209-0
  10. Rosenzweig JA, Chopra AK. The exoribonuclease polynucleotide phosphorylase influences the virulence and stress responses of yersiniae and many other pathogens. Front Cell Infect Microbiol 2013;3:81.
  11. De Lay N, Gottesman S. Role of polynucleotide phosphorylase in sRNA function in Escherichia coli. RNA 2011;17:1172-1189. https://doi.org/10.1261/rna.2531211
  12. Cameron TA, Matz LM, De Lay NR. Polynucleotide phosphorylase: not merely an RNase but a pivotal post-transcriptional regulator. PLoS Genet 2018;14:e1007654. https://doi.org/10.1371/journal.pgen.1007654
  13. Fuller TE, Kennedy MJ, Lowery DE. Identification of Pasteurella multocida virulence genes in a septicemic mouse model using signature-tagged mutagenesis. Microb Pathog 2000;29:25-38. https://doi.org/10.1006/mpat.2000.0365
  14. Engman J, Negrea A, Sigurlasdottir S, Georg M, Eriksson J, Eriksson OS, Kuwae A, Sjolinder H, Jonsson AB. Neisseria meningitidis polynucleotide phosphorylase affects aggregation, adhesion, and virulence. Infect Immun 2016;84:1501-1513. https://doi.org/10.1128/IAI.01463-15
  15. Fuller TE, Martin S, Teel JF, Alaniz GR, Kennedy MJ, Lowery DE. Identification of Actinobacillus pleuropneumoniae virulence genes using signature-tagged mutagenesis in a swine infection model. Microb Pathog 2000;29:39-51. https://doi.org/10.1006/mpat.2000.0364
  16. Oswald W, Tonpitak W, Ohrt G, Gerlach G. A single-step transconjugation system for the introduction of unmarked deletions into Actinobacillus pleuropneumoniae serotype 7 using a sucrose sensitivity marker. FEMS Microbiol Lett 1999;179:153-160. https://doi.org/10.1016/S0378-1097(99)00406-1
  17. Lin L, Bei W, Sha Y, Liu J, Guo Y, Liu W, Tu S, He Q, Chen H. Construction and immunogencity of a ΔapxIC/ΔapxIIC double mutant of Actinobacillus pleuropneumoniae serovar 1. FEMS Microbiol Lett 2007;274:55-62. https://doi.org/10.1111/j.1574-6968.2007.00813.x
  18. Hu J, McCormick RJ, Means WJ, Zhu MJ. Polynucleotide phosphorylase is required for Escherichia coli O157:H7 growth above refrigerated temperature. Foodborne Pathog Dis 2014;11:177-185. https://doi.org/10.1089/fpd.2013.1632
  19. Nielsen R, van den Bosch JF, Plambeck T, Sorensen V, Nielsen JP. Evaluation of an indirect enzyme-linked immunosorbent assay (ELISA) for detection of antibodies to the Apx toxins of Actinobacillus pleuropneumoniae. Vet Microbiol 2000;71:81-87. https://doi.org/10.1016/S0378-1135(99)00157-1
  20. Xu F, Chen X, Shi A, Yang B, Wang J, Li Y, Guo X, Blackall PJ, Yang H. Characterization and immunogenicity of an apxIA mutant of Actinobacillus pleuropneumoniae. Vet Microbiol 2006;118:230-239. https://doi.org/10.1016/j.vetmic.2006.07.013
  21. Bei W, He Q, Yan L, Fang L, Tan Y, Xiao S, Zhou R, Jin M, Guo A, Lv J, Huang H, Chen H. Construction and characterization of a live, attenuated apxIICA inactivation mutant of Actinobacillus pleuropneumoniae lacking a drug resistance marker. FEMS Microbiol Lett 2005;243:21-27. https://doi.org/10.1016/j.femsle.2004.11.033
  22. Liu J, Chen X, Lin L, Tan C, Chen Y, Guo Y, Jin M, Guo A, Bei W, Chen H. Potential use an Actinobacillus pleuropneumoniae double mutant strain ΔapxIICΔapxIVA as live vaccine that allows serological differentiation between vaccinated and infected animals. Vaccine 2007;25:7696-7705. https://doi.org/10.1016/j.vaccine.2007.07.053
  23. Seah JN, Frey J, Kwang J. The N-terminal domain of RTX toxin ApxI of Actinobacillus pleuropneumoniae elicits protective immunity in mice. Infect Immun 2002;70:6464-6467. https://doi.org/10.1128/IAI.70.11.6464-6467.2002
  24. Frey J. The role of RTX toxins in host specificity of animal pathogenic Pasteurellaceae. Vet Microbiol 2011;153:51-58. https://doi.org/10.1016/j.vetmic.2011.05.018
  25. Ramjeet M, Deslandes V, Goure J, Jacques M. Actinobacillus pleuropneumoniae vaccines: from bacterins to new insights into vaccination strategies. Anim Health Res Rev 2008;9:25-45. https://doi.org/10.1017/s1466252307001338
  26. Yuan F, Liao Y, You W, Liu Z, Tan Y, Zheng C, BinWang, Zhou D, Tian Y, Bei W. Deletion of the znuA virulence factor attenuates Actinobacillus pleuropneumoniae and confers protection against homologous or heterologous strain challenge. Vet Microbiol 2014;174:531-539. https://doi.org/10.1016/j.vetmic.2014.10.016
  27. Xie F, Li G, Zhou L, Zhang Y, Cui N, Liu S, Wang C. Attenuated Actinobacillus pleuropneumoniae double-deletion mutant S-8ΔclpP/apxIIC confers protection against homologous or heterologous strain challenge. BMC Vet Res 2017;13:14. https://doi.org/10.1186/s12917-016-0928-9
  28. Wang L, Qin W, Yang S, Zhai R, Zhou L, Sun C, Pan F, Ji Q, Wang Y, Gu J, Feng X, Du C, Han W, Langford PR, Lei L. The Adh adhesin domain is required for trimeric autotransporter Apa1-mediated Actinobacillus pleuropneumoniae adhesion, autoaggregation, biofilm formation and pathogenicity. Vet Microbiol 2015;177:175-183. https://doi.org/10.1016/j.vetmic.2015.02.026
  29. Fu S, Ou J, Zhang M, Xu J, Liu H, Liu J, Yuan F, Chen H, Bei W. The live attenuated Actinobacillus pleuropneumoniae triple-deletion mutant ΔapxIC ΔapxIIC ΔapxIV-ORF1 strain, SLW05, Immunizes pigs against lethal challenge with Haemophilus parasuis. Clin Vaccine Immunol 2013;20:134-139. https://doi.org/10.1128/CVI.00458-12
  30. Chiers K, De Waele T, Pasmans F, Ducatelle R, Haesebrouck F. Virulence factors of Actinobacillus pleuropneumoniae involved in colonization, persistence and induction of lesions in its porcine host. Vet Res 2010;41:65. https://doi.org/10.1051/vetres/2010037
  31. Park C, Ha Y, Kim S, Chae C, Ryu DY. Construction and characterization of an Actinobacillus pleuropneumoniae serotype 2 mutant lacking the Apx toxin secretion protein genes apxIIIB and apxIIID. J Vet Med Sci 2009;71:1317-1323. https://doi.org/10.1292/jvms.001317
  32. Bao CT, Xiao JM, Liu BJ, Liu JF, Zhu RN, Jiang P, Li L, Langford PR, Lei LC. Establishment and comparison of Actinobacillus pleuropneumoniae experimental infection model in mice and piglets. Microb Pathog 2019;128:381-389. https://doi.org/10.1016/j.micpath.2019.01.028
  33. Li Y, Cao S, Zhang L, Yuan J, Zhao Q, Wen Y, Wu R, Huang X, Yan Q, Huang Y, Ma X, Han X, Miao C, Wen X. A requirement of TolC1 for effective survival, colonization and pathogenicity of Actinobacillus pleuropneumoniae. Microb Pathog 2019;134:103596. https://doi.org/10.1016/j.micpath.2019.103596
  34. Li T, Zhang Q, Wang R, Zhang S, Pei J, Li Y, Li L, Zhou R. The roles of flp1 and tadD in Actinobacillus pleuropneumoniae pilus biosynthesis and pathogenicity. Microb Pathog 2019;126:310-317. https://doi.org/10.1016/j.micpath.2018.11.010
  35. Loera-Muro A, Angulo C. New trends in innovative vaccine development against Actinobacillus pleuropneumoniae. Vet Microbiol 2018;217:66-75. https://doi.org/10.1016/j.vetmic.2018.02.028
  36. Inzana TJ, Todd J, Ma JN, Veit H. Characterization of a non-hemolytic mutant of Actinobacillus pleuropneumoniae serotype 5: role of the 110 kilodalton hemolysin in virulence and immunoprotection. Microb Pathog 1991;10:281-296. https://doi.org/10.1016/0882-4010(91)90012-Y
  37. Dehio C, Meyer M. Maintenance of broad-host-range incompatibility group P and group Q plasmids and transposition of Tn5 in Bartonella henselae following conjugal plasmid transfer from Escherichia coli. J Bacteriol 1997;179:538-540. https://doi.org/10.1128/jb.179.2.538-540.1997
  38. Baltes N, Tonpitak W, Hennig-Pauka I, Gruber AD, Gerlach GF. Actinobacillus pleuropneumoniae serotype 7 siderophore receptor FhuA is not required for virulence. FEMS Microbiol Lett 2003;220:41-48. https://doi.org/10.1016/S0378-1097(03)00064-8