Acknowledgement
This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) through Crop Viruses and Pests Response Industry Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (321102-03-1-CG000).
References
- NINO-LIU DO, Ronald PC, Bogdanove AJ. 2006. Xanthomonas oryzae pathovars: model pathogens of a model crop. Mol. Plant Pathol. 7: 303-324. https://doi.org/10.1111/j.1364-3703.2006.00344.x
- Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, et al. 2012. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant Pathol. 13: 614-629. https://doi.org/10.1111/j.1364-3703.2012.00804.x
- Buttner D, Bonas U. 2010. Regulation and secretion of Xanthomonas virulence factors. FEMS Microbiol. Rev. 34: 107-133. https://doi.org/10.1111/j.1574-6976.2009.00192.x
- Branda SS, Vik A, Friedman L,Kolter R. 2005. Biofilms: the matrix revisited. Trends Microbiol. 13: 20-26. https://doi.org/10.1016/j.tim.2004.11.006
- Sutherland IW. 2001. Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147: 3-9. https://doi.org/10.1099/00221287-147-1-3
- Ramey BE, Koutsoudis M, von Bodman SB, Fuqua C. 2004. Biofilm formation in plant-microbe associations. Curr. Opin. Microbiol. 7: 602-609. https://doi.org/10.1016/j.mib.2004.10.014
- Lohse MB, Gulati M, Johnson AD, Nobile CJ. 2018. Development and regulation of single-and multi-species Candida albicans biofilms. Nat. Rev. Microbiol. 16: 19-31. https://doi.org/10.1038/nrmicro.2017.107
- Tayi L, Maku R, Patel HK, Sonti RV. 2016. Action of multiple cell wall-degrading enzymes is required for elicitation of innate immune responses during Xanthomonas oryzae pv. oryzae infection in rice. Mol. Plant-Microbe Interact. 29: 599-608. https://doi.org/10.1094/MPMI-02-16-0039-R
- Jansson P-e, Kenne L, Lindberg B. 1975. Structure of the extracellular polysaccharide from Xanthomonas campestris. Carbohydr. Res. 45: 275-282. https://doi.org/10.1016/S0008-6215(00)85885-1
- Koplin R, Arnold W, Hotte B, Simon R, Wang G,Puhler A. 1992. Genetics of xanthan production in Xanthomonas campestris: the xanA and xanB genes are involved in UDP-glucose and GDP-mannose biosynthesis. J. Bacteriol. 174: 191-199. https://doi.org/10.1128/jb.174.1.191-199.1992
- Buttner D, Bonas U. 2002. Getting across-bacterial type III effector proteins on their way to the plant cell. EMBO J. 21: 5313-5322. https://doi.org/10.1093/emboj/cdf536
- Jones JD, Dangl JL. 2006. The plant immune system. Nature 444: 323-329. https://doi.org/10.1038/nature05286
- LaSarre B, Federle MJ. 2013. Exploiting quorum sensing to confuse bacterial pathogens. Microbiol. Mol. Biol. Rev. 77: 73-111. https://doi.org/10.1128/MMBR.00046-12
- Tomlin KL, Malott RJ, Ramage G, Storey DG, Sokol PA, Ceri H. 2005. Quorum-sensing mutations affect attachment and stability of Burkholderia cenocepacia biofilms. Appl. Environ. Microbiol. 71: 5208-5218. https://doi.org/10.1128/AEM.71.9.5208-5218.2005
- Barel V, Chalupowicz L, Barash I, Sharabani G, Reuven M, Dror O, et al. 2015. Virulence and in planta movement of X anthomonas hortorum pv. pelargonii are affected by the diffusible signal factor (DSF)-dependent quorum sensing system. Mol. Plant Pathol. 16: 710-723. https://doi.org/10.1111/mpp.12230
- Sun J. 2007. D-Limonene: safety and clinical applications. Altern. Med. Rev. 12: 259-264.
- Lee GW, Chung MS, Kang M, Chung BY, Lee S. 2016. Direct suppression of a rice bacterial blight (Xanthomonas oryzae pv. oryzae) by monoterpene (S)-limonene. Protoplasma 253: 683-690. https://doi.org/10.1007/s00709-015-0904-4
- Guimaraes AC, Meireles LM, Lemos MF, Guimaraes MCC, Endringer DC, Fronza M, et al. 2019. Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules 24: 2471.
- Dabbah R, Edwards V, Moats W. 1970. Antimicrobial action of some citrus fruit oils on selected food-borne bacteria. Appl. Microbiol. 19: 27-31. https://doi.org/10.1128/am.19.1.27-31.1970
- Brennan TC, JO Kromer, Nielsen LK. 2013. Physiological and transcriptional responses of Saccharomyces cerevisiae to d-limonene show changes to the cell wall but not to the plasma membrane. Appl. Environ. Microbiol. 79: 3590-3600. https://doi.org/10.1128/AEM.00463-13
- Sahu SK, Zheng P, Yao N. 2018. Niclosamide blocks rice leaf blight by inhibiting biofilm formation of Xanthomonas oryzae. Front. Plant Sci. 9: 408.
- Singh A, Gupta R, Tandon S, Pandey R. 2017. Thyme oil reduces biofilm formation and impairs virulence of Xanthomonas oryzae. Front. Microbiol. 8: 1074.
- Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25: 402-408. https://doi.org/10.1006/meth.2001.1262
- Ncube N, Afolayan A, Okoh A. 2008. Assessment techniques of antimicrobial properties of natural compounds of plant origin: current methods and future trends. Afr. J. Biotechnol. 7: 1797-1806. https://doi.org/10.5897/AJB07.613
- Silva LN, Zimmer KR, Macedo AJ, Trentin DS. 2016. Plant natural products targeting bacterial virulence factors. Chem. Rev. 116: 9162-9236. https://doi.org/10.1021/acs.chemrev.6b00184
- Bjarnsholt T, Ciofu O, Molin S, Givskov M, Hoiby N. 2013. Applying insights from biofilm biology to drug development-can a new approach be developed? Nat. Rev. Drug Dis. 12: 791-808. https://doi.org/10.1038/nrd4000
- Tharmalingam N, Kim SH, Park M, Woo HJ, Kim HW, Yang JY, et al. 2014. Inhibitory effect of piperine on Helicobacter pylori growth and adhesion to gastric adenocarcinoma cells. Infect. Agents Cancer 9: 43.
- Dusane DH, Hosseinidoust Z, Asadishad B,Tufenkji N. 2014. Alkaloids modulate motility, biofilm formation and antibiotic susceptibility of uropathogenic Escherichia coli. PLoS One 9: e112093.
- Liaw SJ, Lai HC, Wang WB. 2004. Modulation of swarming and virulence by fatty acids through the RsbA protein in Proteus mirabilis. Infect. Immunity 72: 6836-6845. https://doi.org/10.1128/IAI.72.12.6836-6845.2004
- Jakobsen TH, Bragason SK, Phipps RK, Christensen LD, van Gennip M, Alhede M, et al. 2012. Food as a source for quorum sensing inhibitors: iberin from horseradish revealed as a quorum sensing inhibitor of Pseudomonas aeruginosa. Appl. Environ. Microbiol. 78: 2410-2421. https://doi.org/10.1128/AEM.05992-11
- Choi SC, Zhang C, Moon S, Oh YS. 2014. Inhibitory effects of 4-hydroxy-2, 5-dimethyl-3 (2H)-furanone (HDMF) on acyl-homoserine lactone-mediated virulence factor production and biofilm formation in Pseudomonas aeruginosa PAO1. J. Microbiol. 52: 734-742. https://doi.org/10.1007/s12275-014-4060-x
- Jarrell KF, McBride MJ. 2008. The surprisingly diverse ways that prokaryotes move. Nat. Rev. Microbiol. 6: 466-476. https://doi.org/10.1038/nrmicro1900
- Kearns DB. 2010. A field guide to bacterial swarming motility. Nat. Rev. Microbiol. 8: 634-644. https://doi.org/10.1038/nrmicro2405
- O'Toole GA, Kolter R. 1998. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol. 30: 295-304. https://doi.org/10.1046/j.1365-2958.1998.01062.x
- De Kerchove AJ, Elimelech M. 2008. Calcium and magnesium cations enhance the adhesion of motile and nonmotile Pseudomonas aeruginosa on alginate films. Langmuir. 24: 3392-3399. https://doi.org/10.1021/la7036229
- Chen X, Sun C, Laborda P, Zhao Y, Palmer I, Fu ZQ, et al. 2018. Melatonin treatment inhibits the growth of Xanthomonas oryzae pv. oryzae. Front. Microbiol. 9: 2280.
- Kerekes EB, Deak E, Tako M, Tserennadmid R, Petkovits T, Vagvolgyi C, et al. 2013. Anti-biofilm forming and anti-quorum sensing activity of selected essential oils and their main components on food-related micro-organisms. J. Appl. Microbiol. 115: 933-942. https://doi.org/10.1111/jam.12289
- Wilson C, Lukowicz R, Merchant S, Valquier-Flynn H, Caballero J, Sandoval J, et al. 2017. Quantitative and qualitative assessment methods for biofilm growth: a mini-review. Res. Rev. J. Eng. Technol. 6. http://www.rroij.com/open-access/quantitative-and-qualitative-assessment-methods-for-biofilm-growth-a-minireview-.pdf.
- He YW, Cao XQ, Poplawsky AR. 2020. Chemical structure, biological roles, biosynthesis and regulation of the yellow xanthomonadin pigments in the phytopathogenic genus Xanthomonas. Mol. Plant Microbe Interact. 33: 705-714. https://doi.org/10.1094/MPMI-11-19-0326-CR
- Poplawsky A, Urban S, Chun W. 2000. Biological role of xanthomonadin pigments in Xanthomonas campestris pv. campestris. Appl. Environ. Microbiol. 66: 5123-5127. https://doi.org/10.1128/AEM.66.12.5123-5127.2000
- Shi W, Li C, Li M, Zong X, Han D, Chen Y. 2016. Antimicrobial peptide melittin against Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen in rice. Appl. Microbiol. Biotechnol. 100: 5059-5067. https://doi.org/10.1007/s00253-016-7400-4
- Xu Y, Zhu XF, Zhou MG, Kuang J, Zhang Y, Shang Y, et al. 2010. Status of streptomycin resistance development in Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola in China and their resistance characters. J. Phytopathol. 158: 601-608. https://doi.org/10.1111/j.1439-0434.2009.01657.x
- Gupta A, Jeyakumar E, Lawrence R. 2021. Strategic approach of multifaceted antibacterial mechanism of limonene traced in Escherichia coli. Sci. Rep. 11: 13816.
- Vojnov AA, Slater H, Daniels MJ, Dow JM. 2001. Expression of the gum operon directing xanthan biosynthesis in Xanthomonas campestris and its regulation in planta. Mol. Plant Microbe Interact. 14: 768-774. https://doi.org/10.1094/MPMI.2001.14.6.768
- He YW, Wu Je, Cha JS, Zhang LH. 2010. Rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae produces multiple DSF-family signals in regulation of virulence factor production. BMC Microbiol. 10: 187.
- Ryan RP, Dow JM. 2011. Communication with a growing family: diffusible signal factor (DSF) signaling in bacteria. Trends Microbiol. 19: 145-152. https://doi.org/10.1016/j.tim.2010.12.003