• Title/Summary/Keyword: BE-algebra

Search Result 653, Processing Time 0.023 seconds

ON n-FOLD IMPLICATIVE VAGUE FILTERS IN BE-ALGEBRAS

  • Park, Sang-Tae;Ahn, Sun-Shin
    • The Pure and Applied Mathematics
    • /
    • v.19 no.2
    • /
    • pp.127-136
    • /
    • 2012
  • In this paper, we introduce the notion of an implicative vague filter in BE-algebras, and investigate some properties of them. Also we give conditions for a vague set to be an implicative vague filter, and we characterize implicative vague filters in BE-algebras. We define the notion of $n$-fold implicative vague filters in BE-algebras and we give characterizations of $n$-fold implicative vague filters and $n$-fold implicative BE-algebras.

Root Test for Plane Polynomial Pythagorean Hodograph Curves and It's Application (평면 다항식 PH 곡선에 대한 근을 이용한 판정법과 그 응용)

  • Kim, Gwang Il
    • Journal of the Korea Computer Graphics Society
    • /
    • v.6 no.1
    • /
    • pp.37-50
    • /
    • 2000
  • Using the complex formulation of plane curves which R. T. Farouki introduced, we can identify any plane polynomial curve with only a polynomial with complex coefficients. In this paper, using the well-known fundamental theorem of algebra, we completely factorize the polynomial over the complex number field C and from the completely factorized form of the polynomial, we find a new necessary and sufficient condition for a plane polynomial curve to be a Pythagorean-hodograph curve, obseving the set of all roots of the complex polynomial corresponding to the plane polynomial curve. Applying this method to space polynomial curves in the three dimensional Minkowski space $R^{2,1}$, we also find the necessary and sufficient condition for a polynomial curve in $R^{2,1}$ to be a PH curve in a new finer form and characterize all possible curves completely.

  • PDF

Crossing the Gap between Elementary School Mathematics and Secondary School Mathematics: The Case of Systems of Linear Equations (그림그리기 전략을 통한 초.중등수학의 연립방정식 지도 연결성 강화)

  • Kwon, Seok-Il;Yim, Jae-Hoon
    • Journal of Educational Research in Mathematics
    • /
    • v.17 no.2
    • /
    • pp.91-109
    • /
    • 2007
  • This study deals with the problem of transition from arithmetic to algebra and the relationship between elementary and secondary school mathematics for systems of linear equations. In elementary school, activity for solving word problems related to systems of linear equations in two variables falls broadly into using two strategies: Guess and check and making a table. In secondary school, those problems are solved algebraically, for example, by solving systems of equations using the technique of elimination. The analysis of mathematics textbooks shows that there is no link between strategies of elementary school mathematics and secondary school mathematics. We devised an alternative way to reinforce link between elementary and secondary school mathematics for systems of linear equations. Drawing a diagram can be introduced as a strategy solving word problems related to systems of linear equations in two variables in elementary school. Moreover it is closely related to the idea of the technique of elimination of secondary school mathematics. It may be a critical juncture of elementary-secondary school mathematics in the case of systems of linear equations in two variables.

  • PDF

The fraction of simplex-centroid mixture designs (심플렉스 중심배열법의 일부실시에 관한 연구)

  • Kim, Hyoung Soon;Park, Dong Kwon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1295-1303
    • /
    • 2015
  • In a mixture experiment, one may be interested in estimating not only main effects but also some interactions. Main effects and interactions may be estimated through appropriate designs such as simplex-centroid designs. However, the estimability problems, implied by the sum to one functional relationship among the factors, have strong consequences on the confounding and identifiability of models for such designs. To handle these problems, we address homogeneous polynomial model based on the computational commutative algebra (CCA) instead of using $Scheff{\acute{e}}s$ canonical model which is typically used. The problem posed here is to give how to choose estimable main effects and also some low-degree interactions. The theory is tested using a fraction of simplex-centroid designs aided by a modern computational algebra package CoCoA.

A Visual-Based Logic Minimization Method

  • Kim, Eun-Gi
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.5
    • /
    • pp.9-19
    • /
    • 2011
  • In many instances a concise form of logic is often required for building today's complex systems. The method described in this paper can be used for a wide range of industrial applications that requires Boolean type of logic minimization. Unlike some of the previous logic minimization methods, the proposed method can be used to better gain insights into the logic minimization process. Based on the decimal valued matrix, the method described here can be used to find an exact minimized solution for a given Boolean function. It is a visual based method that primarily relies on grouping the cell values within the matrix. At the same time, the method is systematic to the extent that it can also be computerized. Constructing the matrix to visualize a logic minimization problem should be relatively easy for the most part, particularly if the computer-generated graphs are accompanied.

ON p-HYPONORMAL OPERATORS ON A HILBERT SPACE

  • Cha, Hyung-Koo
    • The Pure and Applied Mathematics
    • /
    • v.5 no.2
    • /
    • pp.109-114
    • /
    • 1998
  • Let H be a separable complex H be a space and let (equation omitted)(H) be the *-algebra of all bounded linear operators on H. An operator T in (equation omitted)(H) is said to be p-hyponormal if ($T^{\ast}T)^p - (TT^{\ast})^{p}\geq$ 0 for 0 < p < 1. If p = 1, T is hyponormal and if p = $\frac{1}{2}$, T is semi-hyponormal. In this paper, by using a technique introduced by S. K. Berberian, we show that the approximate point spectrum $\sigma_{\alpha p}(T) of a pure p-hyponormal operator T is empty, and obtains the compact perturbation of T.

  • PDF

INT-SOFT MIGHTY FILTERS IN BE-ALGEBRAS

  • KIM, YOUNG HEE;PARK,
    • Journal of applied mathematics & informatics
    • /
    • v.34 no.5_6
    • /
    • pp.527-536
    • /
    • 2016
  • In this paper, we introduce the notions about int-soft mighty filters, int-soft n-fold mighty filters, and int-soft n-fold positive implicative filters of BE-algebras. We investigate their properties and provide conditions which have connecting relationship among int-soft filters, int-soft mighty filters, and int-soft positive implicative filters. Also, characterizations of int-soft n-fold mighty filters and int-soft n-fold positive implicative filters are provided in BE-algebras.

RELATIONS BETWEEN THE ITO PROCESSES

  • Choi, Won
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.1
    • /
    • pp.207-213
    • /
    • 1995
  • Let $(\Omega, F, P)$ be a probability space with F a $\sigma$-algebra of subsets of the measure space $\Omega$ and P a probability measure on $\Omega$. Suppose $a > 0$ and let $(F_t)_{t \in [0,a]}$ be an increasing family of sub-$\sigma$-algebras of F. If $r > 0$, let $J = [-r,0]$ and $C(J, R^n)$ the Banach space of all continuous paths $\gamma : J \to R^n$ with the sup-norm $\Vert \gamma \Vert = sup_{s \in J}$\mid$\gamma(s)$\mid$$ where $$\mid$\cdot$\mid$$ denotes the Euclidean norm on $R^n$. Let E,F be separable real Banach spaces and L(E,F) be the Banach space of all continuous linear maps $T : E \to F$.

  • PDF

AN ACTION OF A GALOIS GROUP ON A TENSOR PRODUCT

  • Hwang, Yoon-Sung
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.645-648
    • /
    • 2005
  • Let K be a Galois extension of a field F with G = Gal(K/F). Let L be an extension of F such that $K\;{\otimes}_F\;L\;=\; N_1\;{\oplus}N_2\;{\oplus}{\cdots}{\oplus}N_k$ with corresponding primitive idempotents $e_1,\;e_2,{\cdots},e_k$, where Ni's are fields. Then G acts on $\{e_1,\;e_2,{\cdots},e_k\}$ transitively and $Gal(N_1/K)\;{\cong}\;\{\sigma\;{\in}\;G\;/\;{\sigma}(e_1)\;=\;e_1\}$. And, let R be a commutative F-algebra, and let P be a prime ideal of R. Let T = $K\;{\otimes}_F\;R$, and suppose there are only finitely many prime ideals $Q_1,\;Q_2,{\cdots},Q_k$ of T with $Q_i\;{\cap}\;R\;=\;P$. Then G acts transitively on $\{Q_1,\;Q_2,{\cdots},Q_k\},\;and\;Gal(qf(T/Q_1)/qf(R/P))\;{\cong}\;\{\sigma{\in}\;G/\;{\sigma}-(Q_1)\;=\;Q_1\}$ where qf($T/Q_1$) is the quotient field of $T/Q_1$.

GENERATION OF RAY CLASS FIELDS MODULO 2, 3, 4 OR 6 BY USING THE WEBER FUNCTION

  • Jung, Ho Yun;Koo, Ja Kyung;Shin, Dong Hwa
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.343-372
    • /
    • 2018
  • Let K be an imaginary quadratic field with ring of integers ${\mathcal{O}}_K$. Let E be an elliptic curve with complex multiplication by ${\mathcal{O}}_K$, and let $h_E$ be the Weber function on E. Let $N{\in}\{2,3,4,6\}$. We show that $h_E$ alone when evaluated at a certain N-torsion point on E generates the ray class field of K modulo $N{\mathcal{O}}_K$. This would be a partial answer to the question raised by Hasse and Ramachandra.