
한국산업정보학회논문지 제16권 제5호(2011. 12)

- 9 -

A Visual-Based

Logic Minimization Method

Eungi Kim*

Abstract In many instances a concise form of logic is often required for building today’s
complex systems. The method described in this paper can be used for a wide range of
industrial applications that requires Boolean type of logic minimization. Unlike some of the
previous logic minimization methods, the proposed method can be used to better gain insights
into the logic minimization process. Based on the decimal‐valued matrix, the method
described here can be used to find an exact minimized solution for a given Boolean function.
It is a visual based method that primarily relies on grouping the cell values within the
matrix. At the same time, the method is systematic to the extent that it can also be
computerized. Constructing the matrix to visualize a logic minimization problem should be
relatively easy for the most part, particularly if the computer-generated graphs are
accompanied.

Key Words : Boolean algebra, logic, minterm, Quine-McCluskey, Karnaugh Map

1. Introduction

Today logic is often used extensively in one form or

another for building complex applications. Minimization

of Boolean expression is essential for implementing

applications such as circuit design. A shorter symbolic

representation also means more efficiency with fewer

errors. Since Boole’s [1] classic work on logic and

Shannon’s [10] work on the application of Boolean

algebra, two influential techniques were developed:

Karnaugh map [4] and Quine-McCluskey [6]. These

two methods are still widely used for finding minimized

logic expressions. The former Karnaugh map is a

popular graphical method, but is not suitable beyond

5-input variables. In contrast, the Quine-McCluskey’s

method can be conveniently used for solving beyond

6-input variable minimization expressions.

Numerous algorithms have been suggested

subsequently. See references in [2, 3, 5, 7, 9] for some

of the methods in dealing with Boolean logic

minimization. Some of these methods proved to be

effective in finding minimized Boolean expressions.

However, none of these methods were developed with

the intent to visualize a logic minimization process.

In this paper, the matrix that supports visual aid in

detecting minimal expression is described in detail. The

author calls the proposed method as the

‘Decimal-Valued Matrix’ method. Unlike Karnaugh

map, it can handle beyond 5-input variables. Compared

to the Quine-McClukey’s method, the selection of prime

implicants is visual based and eliminates the need for

establishing a separate chart to examine the potential

Boolean logic terms. A prime implicant is commonly

referred to as a minimum product term that cannot be

combined with any other product term to eliminate a

variable [6]. For discussion on prime implicant chart

see also [8].

As a result of using the Decimal-Valued Matrix

- 10 -

method, users can gain insights into the logic

minimization problems. Otherwise, it can be used to

verify the Quine-McCluskey’s method. Most important

of all, recognizing certain patterns associated with the

logic problems should become more intuitive for users.

2. Minterms in Respect to Numerical Values

Before presenting the Decimal‐Valued Matrix

method, the notion of minterm in respect to numerical

values is briefly introduced here. This foundational

concept is widely covered in literature such as [4] [10].

In logic minimization related problems, a literal is

usually defined as a single variable within a term. For

example, the letter A may stand for a literal that is in

the complemented form while the letter A may stand

for an uncomplemented form of a literal. The

combination of literals in a product form is referred as

a minterm. Further, a product of literals requires the

logical operation ‘AND’. In Table 1, each variable, in

a complemented or uncomplemented form, is used

exactly only once in the minterm column.

The truth table shows the 24 possible combinations

for 4 variables. Here, for n number of variables, the

list will be expanded to 2n possible combinations. Using

this form of representation, a truth table can represent

any type of Boolean function using minterms.We may

write the above listed possible minterms as m1, m2, m3,

etc. Using a truth, if m3 is true, the following condition

will result: A =0, B =0, C =1, and D =1. A function of

a given problem can be represented by using only

minterms. From the above list, if only minterm m3 and

m5 are represented with the value of 1 as according to

a truth table and if all other have the value of 0, then

the Boolean function can be expressed differently. For

example, the following =Y D C B A + D C B A can be simply

denoted as)(ABCDF =å (m3,m5). The above Boolean

expression is often said to be a sum of product (SOP)

expression since every term contains all input variables.

A non-standard SOP is a case where a term does not

contain all literals.

<Table 1> Minterms for 4‐Variable Minimization Problem

Minterm
Decimal

Value

Binary
Value

of 1’s in
the Binary

Form

Minterms

0 0000 0 D C B A
1 0001 1 D C B A
2 0010 1 D C B A
3 0011 2 C D B A
4 0100 1 D C B A
5 0101 2 D C B A
6 0110 2 DC B A
7 0101 2 D C B A
8 1000 1 D C B A
9 1001 2 D C B A
10 1010 2 D C B A
11 1011 3 D C B A
12 1100 2 D C B A
13 1101 3 D C B A
14 1110 3 D C B A
15 1111 4 D C B A

As for another example, a Boolean expression C BAY +=

involves three variables. Even though it is in minimized

form, this is not a standard SOP. This expression can

be converted to a standard SOP expression using an

expansion m ethod. That is, C BAY += can be

converted into the following expression:

C B AC B AC B AC B AC B AY ++++= .

The latter logic expression can be also derived using

the laws of Boolean algebra, but alternatively it can be

expanded more easily using a series of binary numbers.

For a variable A , a binary value 1 can be used. Also,

a binary value 0 can be used for the variable A . The

expansion rule counts the total number of variables and

expands the minterm based on combinatorial binary value.

Considering the Boolean function C BAY += , the first term

A can be expanded as a series of binary numbers 000

001 010 011. The variable A alone means that any one

of the following combination can occur: C B A , C B A ,

- 11 -

C B A , or C B A . Translating the binary number to the

decimal number, the result would be 0, 1, 2 and 3. The

second term C B can be expanded as 011 and 111. Thus,

the term C B can be expanded to C B A or C B A . Using

the above decimal based number scheme, the minterm

C B can be denoted as m3 and m7. Combining values,

we have m0, m1, m2, m3, and m7 as decimal based

minterm values. The minterms represent the Boolean

expression C B AC B AC B AC B AC B AY ++++= .

In turn, these values are equivalent to the Boolean

expression C BAY += , which is our original minterm

expression. Also, note that a logic function with n

variables has 2n minterms. In the above example, the

4-variable input function has a total of 16 minterms.

The Quine-McCluskey method is based on binary

number bit patterns that arise among the minterms.

As shown in Table 1, the number of 1’s in the binary

form that ranges from 0 to 4. The method starts with

grouping minterms based on the number of 1’s. As an

example, for the binary values 0001, 0010, 0100, and 1000,

there is exactly a single “1” in every binary form of

number. As a consequence, group 1 consists of minterm

2, 8, and 16. In the Quine-McCluskey’s method the

value of each group is compared with each other using

a binary form of minterm numbers. Overall, in this

proposed method, the minterm patterns are observed

with decimal numbers instead of

binary numbers.

3. Illustration of the Minimization Procedure

The following section describes the Decimal Valued

Matrix method in detail. Let’s consider a simple

example with 4-variable logic minimization problem å

(0,2,4,8,9,10,12).

Note that the letter m, which stands for minterm, was

omitted for simplicity. The maximum minterm value,

which is 15, implies that this is a 4-variable

minimization problem. Using the previously mentioned

cell matrix layout scheme, Figure 1 can be produced.

3.1 Step I. Layout a Matrix with Minterm

Values

The first step in finding a minimized Boolean

expression is to construct a matrix as shown in Figure

1. The matrix needs to layout minterm values according

to the matrix construction rule. Figure 1 shows the

minterms based on counting the 1’s and the

corresponding cell values after performing the

calculation. The line that partitions the matrix into

different sections is said to be a symmetry line.

Whether a symmetry line is shown on the matrix or

not, readers should assume that there is a symmetry

line that divides the matrix into different sections.

Also, the ordering of group and the layout of these

groups on the matrix is significant in this approach.

Same as the Quine-McCluskey method, sequential

numbered groups can be formed based on number of

1’s that exist in each binary based minterm. Also, the

sequence of comparing group is same as the

Quine-McCluskey’s method. In this method, the top

most row and the left most column are used for labeling

the minterms. Notice that the minterms are ordered in

an alternating sequence. The top side minterms are

based on every odd number of 1’s while the left side

minterm are based on every even number of 1’s.

Therefore, the top side of matrix will be Group 1, Group

3, Group 5, etc. Meanwhile, the left side of the matrix

will be Group 0, Group 2, Group 4, etc. We refer to

this type of grouping scheme which is based on the

frequency count of 1’s in the binary form of minterms

as a bit-numbered group. Additionally, obtaining these

cell values is described in the next section.

3.2 Step II. Record the Cell-Coordinate

Values

Once the matrix is laid out with different partitions,

the cell-coordinate value needs to be calculated and

- 12 -

recorded. In Figure 1, each cell can represent a value

where the corresponding row minterm and column

minterm intersect. To avoid confusion, three terms (cell

coordinate, cell value, cell‐coordinate value) are defined

in the following.

Cell-coordinate refers to an individual cell element

which is represented as an intersecting pair of minterm

row and column number. For example, the cell

coordinate (8,0) indicates that the cell intersects with

the minterm value 8 and minterm value 0. Cell

coordinate is a minterm pair (i i M M ,1+) where i=l to z.

Here, l is the lowest index number of the bit-numbered

group while z is the highest bit‐group value. The

entire matrix will contain cell coordinates

{(i i M M ,1+),(1++ i2i M M ,)... (1-z z M M ,)}.

<Figure 1> The Matrix with Subtracted Values

Cell value, which is denoted as C, is a difference

between two cell-coordinate elements and must be the

power of 2 (e.g., 1,2,4,8, etc.). For example, C =8 for

the cell coordinate (8,0). C is a subtracted value which

can be obtained by i i M M -+ 1 . C is only valid if it is

a power of 2 and iM 1+ must be greater than iM . In

this case, the cell value which is obtained by subtracting

0 from 8 is valid since i i M M >+ 1 and it is a power of

2. Starting with the lowest bit-numbered group i , we

compare M to the next bit-numbered group 1+iM in

order to obtain the cell value C. When comparing and

subtracting minterm values for the cell values, if the

next higher bit-numbered group is lower than the

current bit-numbered group, we can skip performing

the subtraction operation

Combining the above definitions, a cell‐coordinate

value is defined as (i i M M ,1+)C. For example, (8,0)8 is

a cell‐coordinate value which represents the cell

coordinate (8,0) and the cell value 8.

3.3 Step III. Group Cells Based on Symmetry

The next step is to group the cells based on the

notion of symmetry. A symmetric group consists

of four cell values in such a way that two of cell

values from one bit-numbered group are symmetric

to its adjacent bit-numbered group. As Figure 2

indicate, two symmetric groups can be identified

with the above minterm function å (0,2,4,8,9,10,12).

These are

Symmetric Group 1: (2,0)2,(8,0)8,(10,2)8, (10,8)2

Symmetric Group 2: (4,0)4, (8,0)8, (12,4)8, (12,8)4

The cell values of circled elements are perfectly

diagonal to each other by crossing the symmetry

line. In this matrix, there are two types of cell

values: ones with small circle, and ones without

any circle. The cells with a small circle are the

type of cell values which can be combined with

another cell value. The cell values without the

circles are the cell values that cannot be combined

as a symmetric group. For example, 1 from cell

coordinate (9,8) is left alone as it can not belong to

any symmetric group.

As a result of grouping the cell values, some

cells can have more than one circle. This type of

circle indicates the cell values is a congruent as it

belongs to more than one symmetric group. This

is a junction point where other groups share the

same cell values together. It is possible to have

multiple circles sometimes since the cell value can

be a member of multiple symmetric groups. For

- 13 -

example, because the cell coordinate (8,0) is a

congruent cell‐coordinate, the cell value in this

case is enclosed by a double circle.

<Figure 2> The Matrix after Grouping

3.4 Step IV. Cover Minterms with Cell Values

After the matrix is constructed, we need to find

an optimal way to cover minterms by using the

prime implicants. Since more than one prime

implicant can cover a minterm, we start the process

by locating essential prime implicants that was not

enclosed by any circles. Non-circled elements do

not necessary mean they are essential prime

implicant so close visual inspection is necessary for

each non-circled element. The reason for start

covering a non-circled cell value first is that a

non-circled cell values is easier to determine

whether it is an essential implicant or not.

Sometimes minterms can be covered more than

one way when aligned with cell values. If

competing grouped elements which have equal

number of cells that can cover a minterm, there

could be more than one solution. A minterm needs

to be examined vertically as well as horizontally

since some minterms are listed on the top while

other minterms are listed on the left side. Figure 3

shows the overall minterm covering process for the

above minimization problem.

The process of covering minterms can start with

selecting essential prime implicants. Minterm 9 can

be covered by the cell-coordinate value (9,8)1.

Here the cell value 1 must be used and no other

cell value can cover minterm 9. To this end, it is

an essential prime implicant. Essential prime

implicants can be identified by recognizing the only

one cell values in the row or the column. Each

time a prime implicant is selected to cover a

minterm, the corresponding minterms should be

marked so that only remaining minterms can be

examined to complete the procedure.

Next, since there are two symmetric groups, both

groups need to be inspected in order to cover the rest

of the minterms. Figure 3 shows the symmetric groups,

which are prime implicants, covering the minterms.

Minterm 8 and 9 were already covered by cell value 1.

Even though double covering can occur, we can use the

symmetric group 1 and 2 in an attempt to cover the rest

of the minterms. In reference to Figure 2 and 3, the

symmetric group 1 will cover minterm 0, 2, 8, and 10.

Then symmetric group 2 will cover 0, 2, 4, and 8. A

trial and error process may be required to cover every

minterm with minimum number of prime implicants.

In general, if a non-circled cell value is not an

essential prime implicant, then we often need to

select a symmetric group rather than a non-circled

cell values in order to obtain small number of

literals at the end. If none of cell values can cover

a minterm, then the minterm itself is essential, and

it must be translated and included as a part of final

Boolean expression at the end.

<Figure 3> An Example Showing Minterm

Covering Process

- 14 -

Also, in order to determine the best possible

prime implicants, redundant (non-essential)

symmetric groups should be identified. In Figure 3,

there is no redundant group so an example of this

type of group is provided later.

3.5 Step V. Convert the Prime Implicant

Selection

Once all the prime implicants in the form of cell

coordinate values are selected for covering minterms,

the final step is to transform cell coordinate values

to a Boolean expression. For given number of cell

coordinate value, we need to select the highest

minterm value M regardless the number of cell

coordinate values. Thus, we select the highest

number among the inside of the parenthesis. Cell

value C, which is outside of the parenthesis, will be

also used for the final translation.

In Figure 3, if a cell‐coordinate value (9,8)1 is

selected as a prime implicant, then the highest

number inside the parenthesis is 9, or 1001 in binary

form. In addition, since C is 1, the binary number

0001 will be used. Now examining the highest M

with C, 1001 intersects with 0001 at the point of

right most bit. By marking the intersection with

‘x’, 100x would be produced as a result. Here, 100x

is equivalent to the Boolean term C B A .

For the prime implicant symmetric group (2,0)2

,(8,0)8,(10,2)8,(10,8)2, 10 is the highest number among

the group. Now each cell value C needs to be

intersected with the decimal value 10 since 10 is the

highest M. The values of C are 2 and 8. The

decimal number 10 is 1010 in binary form; the values

of C are 0010 and 1000 in binary form Thus, we have

1010

0010 (mark with x where 1 intersect)

1000 (mark with x where 1 intersect)

--

x0x0

The equivalent Boolean term for x0x0 is DB .

For the prime implicant (4,0)4, (8,0)8, (12,4)8 and

(12,8)4, we apply the same procedure. 12, which is

1100 in binary, is the highest M. Since 4 and 8

are the value of C, 1000 and 0100 must be used.

By intersecting these two cell values with the

decimal value 12, the result would be xx00. xx00

is equivalent to D C .

Therefore, the following will result:

(9,8)1 à 100x à C B A
(2,0)2,(8,0)8,(10,2)8,(10,8)2 à x0x0 à D B
(4,0)4,(8,0)8,(12,4)8,(12,8)4 à xx00 à D C
Combining the above Boolean terms together, we

have Y = C B A + D B + D C as a final minimized Boolean

function),,,(DCBAF =å (0,2,4,8,9,10,12).

4. Identifying Redundant Symmetric Groups

For an illustration of steps to identify a redundant

symmetric group, let us consider a logic

minimization function),,,,(EDCBAF =

å (0,2,6,7,8,10,11,12,13,14,16,18,19,29). This problem

involves input 5-input variables since the decimal

values of minterm ranges from 0 to 29. Also, it

implies the bit-numbered group which will range of 0

to 5. After obtaining subtracted values by comparing

each lower bit-numbered group to the next higher

bit-numbered group, Figure 4 would be produced.

In this example, since (2,0), (10,2), (10,8), and

(14,10) are congruent cell coordinates, double circles

are used for each of these cell values. Three out of

four cell coordinates in the symmetric group 1 have

two circles surrounding each of the cell value.

Double‐circled cell coordinates are (2,0), (10,2), and

(10,8). The symmetric group 1 can be eliminated

from the potential prime implicant list that can

convert the minterm since other connected symmetric

groupings would become dominant in covering the

minterms. Since selecting non-redundant symmetric

- 15 -

groups as a prime implicant may lead to an optimal

solution in covering minterms, redundant symmetric

groups must be avoided. The rule of thumb is that

for a given symmetric group, if more than 2 of its

cell values have multiple circles, then the symmetric

group is redundant. Since redundant groupings can

be visually identified, the process of selecting

implicants for covering can become somewhat

simpler after removing the redundant groups.

<Figure 4> A Grouping Example for

å (0,2,6,7,8,10,11,12,13,14,16,18,19,29)

In this figure, four symmetric groups can be

identified. These are

Symmetric Group 1: (2,0),(8,0),(10,2),(10,8)

Symmetric Group 2: (2,0),(18,2),(16,0),(18,16)

Symmetric Group 3: (6,2),(10,2),(14,6),(14,10)

Symmetric Group 4: (10,8),(12,8),(14,10),(14,12)

The covering process can start with selecting

essential prime implicants. In this case, the

cell-coordinate values (7,6)1, (11,10)1, (19,18)1, and

(29,13)16 are essential implicants. Here, these single

cell-coordinate values do not have any circles. Also,

the cell values are the only values which are aligned

diagonally or vertically with the corresponding

minterms. Therefore, the cell-coordinate value

(13,12)1 can be left out since it can be (29,13)16 and

the symmetric group 4 can cover this cell-coordinate.

The remaining symmetric group 2, 3 and 4 must

be inspected so that remaining minterms can be

covered. However, in covering the minterms, the

symmetric group 1 and 3 are not required. The

reason for this is that minterm 6 and 10 were

already covered by the cell-coordinate (7,6), (11,10),

and minterm 14 can be covered by just selecting

the symmetric group 4.

<Figure 5> Minterm Covering for

å (0,2,6,7,8,10,11,12,13,14,16,18,19,29)

After the entire process, Figure 5 will be

produced. Every minterm is covered as the figure

indicates. The prime implicants that are selected to

cover the minterms are indicated on the matrix.

Selecting the following prime implicants are the

most effective ways to cover the minterms:

Symmetric Group 2: (2,0)2,(18,2)16,(16,0)16,(18,16)2

Symmetric Group 4: (10,8)2,(12,8)4,(14,10)4,(14,12)2

Cell-coordinate Values:

(7,6)1,(11,10)1,(19,18)1,(29,13)16

These are the final prime implicant selection

which needs to be converted. Table 2 shows the

final translating step. Finally, the minimized

expression will result in the following: ECB + EBA +

DCBA + DCBA + DCBA + EDCB .

- 16 -

<Table 2> Translating Prime Implicants to

Boolean Terms

Selected Prime Implicants Highe
st M

C
value
s (x)

Binar
y‐

based
Term

Boolean
Term

(2,0)2,(18,2)16,(16,0)16,(18,16)2 18 2,16 x00x0 ECB

(10,8)2,(12,8)4,(14,10)4,(14,12)2 14 2,4 01xx0 EBA
(7,6)1 7 1 0011x DCBA

(11,10)1 11 1 0101x DCBA
(19,18)1 19 1 1001x DCBA
(29,13)16 29 16 x1101 EDCB

5. Paired Symmetric Groups

Sometimes a symmetric group itself can “pair off”

with another symmetric group. In such case, all of

the cell-coordinates are treated as a single

symmetric group. We refer this type of group as a

paired symmetric group. Now Consider a Boolean

minimization problem

å (0,1,2,3,8,9,10,11). See Figure 6 for the matrix

construction and its corresponding cell values.

In this figure, all of the cell-coordinate values ‐

(1,0)1, (2,0)2, (8,0), (3,1)2, (3,2)1, (9,1)8, (11,3)8,

(9,8)1, (11,9)2, (10,2)8, (10,8)2, and (11,10)1 are

connected in some fashion. In the previous

example, every symmetric group was treated

separately. Unlike the previous example, the

symmetric connected groups collectively form a

larger symmetric group and form a paired

symmetric group. The left upper region as a whole

are reflected to right lower corner. In this case,

these cell-coordinate values need to be treated as if

they are combined together as a single prime

implicant.

In the above case, all of its cell-coordinate values

are considered as a single prime implicant.

Consequently, the symmetric groups must be treated

as a single group in covering the minterms.

Since identifying a large number of cell values

can form a paired symmetric group, visually

identifying the paired symmetric groups can be

difficult sometimes. Another way to identify paired

symmetric groups is to examine its cell values

diagonally after an initial grouping. As shown in

the figure, all of the cell numbers line up

diagonally.

<Figure 6> A Paired Symmetric Group

Now we need to translate the result to an

equivalent Boolean expression. The Decimal value

11 is the M, and the values of C would be: 1, 2, 8,

2, 1, 8, 8, 1, 2, 8, 2, and 1. After removing the

duplicate values, we are left with 1, 2, and 8.

These are values that need to be aligned with 11

and marked x where they align. Thus, after 1011

is being intersected by the values 0001, 0010, and

1000, we would have x0xx. Since 0 refers to the

second variable of the term, the final minimized

term is B . Therefore, the output minimized

expression can be written as Y=B .

6. Unspecified (Don’t Care) Minterms

Sometimes unspecified, or “don’t‐care”, minterms

of a function can occur. This is a situation where

certain input specifications have no bearing on the

- 17 -

output of a function. In most cases, this situation

can be utilized to be shorter expression. For

example, consider a Boolean function

)ABCD(F =å (0,2,4,8,9,10,12)+d(13).

Except for the notation d(13), this Boolean

function is the same as the previous Boolean

function which we used for Figure 2. In this case,

d(13) denotes the don’t‐care minterm value 13. If

a don’t‐care condition with minterms is specified,

we list the don’t‐care minterm and calculated

values in the matrix, and mark the don’t‐care

values. This step is required in order to correctly

select prime implicants. However, during the

minterm covering step as shown in Figure 7, don’t

care minterms do not have to be covered by any

prime implicant.

The following will be produced as a result of

selecting the prime implicants.

(9,8)1,(13,9)4,(12,8)4,(13,12)1 à 1x0x à CA

(2,0)2,(8,0)8,(10,2)8,(10,8)2 à x0x0 à DB

(4,0)4,(8,0)8,(12,4)8,(12,8)4 à xx00 à DC

Although the symmetric group can cover the

minterm, it is not required to cover minterm 13

since this is a don’t‐care minterm. Combining the

above terms together, we have

Y = CA + DB + DC as a final minimized Boolean function

)ABCD(F =å (0,2,4,8,9,10,12)+d(13).

<Figure 7> The Matrix for the Minterm

å (0,2,4,8,9,10,12)+d(13)

7. Summary of the Procedure

The following steps summarize the procedures

which were described earlier.

Step 1. Layout a matrix with minterm values.

Minterms are organized based on the bit-numbered

group. The matrix contains minterms in such way

that the top side minterm is based on every odd

number of 1’s while the left side minterm is based

on every even number of 1’s. Starting from the

lowest possible number, alternating sequence of

minterm values has to be labeled on the top most

and left most of line of the matrix.

Step 2. Record the cell values. Every cell value

needs to be calculated by subtracting the lower

bit-numbered minterm group from the next higher

bit-numbered minterm group. The values are

recorded only if the numbers are the power of 2.

Step 3. Group the cell values based on symmetry.

Based on every four members as one group, some

cell values will form a symmetric group. Each cell

values must be circled when it belongs to a

symmetric group. A congruent cell value can be

enclosed with more than one circle. Every

symmetric group needs to be identified in this step.

Then, any redundant symmetric group from the

graph can be removed.

Step 4. Identify paired symmetric groups, if any.

Some symmetric groups itself can pair off with

another symmetric group. These groups, if any,

need to be identified so that they can be treated as

a single group.

Step 5. Select prime implicants to cover

minterms. Starting with cell values which has no

circles, determine whether these are essential prime

implicants by examining its row and column. Once

these essential prime implicants are identified and

minterms that they cover are clearly marked. The

remaining minterms should be covered by

symmetric groups or other non-circled cell values.

- 18 -

If none of the prime implicant can cover a minterm,

then the minterm itself is a term that must be

included in the final expression. A trial and error

process may be required to find a minimal minterm

covering prime implicants. Remove any prime

implicants that fail to cover any minterm. Also, the

don’t‐care minterms must be included and labeled

in the matrix construction, but the minterms do not

have to be covered during the minterm covering

process.

Step 6. Convert the selected prime implicant

values in to a final Boolean expression.

Collectively, the highest M among the

cell-coordinate and each of the cell value C are

used to obtain the final Boolean term. Some binary

bits are marked with ‘x’ after intersecting binary

number of 1’s from each cell value with the highest

minterm M.

8. Conclusion

In this paper, a relatively easy, visual-based

method is presented for finding minimized logic

expressions. The Decimal-Valued Matrix method

can be used to visualize well beyond ‐5-input

variable logic minimization problems. Since

generating graphs and performing calculations by

hand seem impractical for logic problems that

involve large input variables, computer generated

solutions based on this method are definitely more

suitable. In such a case, the user would be able to

visually manipulate a logic pattern and gain further

insights into to the Boolean logic minimization

process. Therefore, a software based implementation

of the Decimal-Valued Matrix and additional

research are needed in order to advance this

approach.

References

[1] G. Boole, An Investigation of the Laws of

Thought, London: Macmillan, at the Internet

Archive, 1854.

[2] R.E. Bryant, “Graph‐based Algorithms for

Boolean Functions Manipulation,” IEEE

Trans.Computers, vol. C‐35, pp. 677-691, Aug.

1986.

[3] O. Coudert, “Doing Two‐Level Logic

Minimization 100 Times Faster,” in Proceeding

SODA '95 Proceedings of the sixth annual

ACM‐SIAM symposium on Discrete

algorithms.

[4] M. Karnaugh, “A map method for synthesis of

combinational logic circuits,” Transactions of the

AIEE, Communications and Electronics, vol 72,

pp. 593-599, 1953.

[5] H. Mahmoud, “A New Method for Two‐Level

Logic Minimization,” in 46th IEEE International

Midwest Symposium on Circuits and Systems,

Magdy Bayoumi (Chairman), Cairo, Egypt,

December 2003.

[6] E. J. McCluskey, “Minimization of

Booleanfunctions,” Bell System Tech.

Journal,Vol. 35, No. 5, pp. 1417-1444, 1956.

[7] P. C. McGeer, J. Sanghavi, R.K.

Brayton,A.L.Sangiovanni‐Vincentelli,

“ESPRESSOSIGNATURE: A New Exact

Minimizer for Logic Functions,” IEEE

Transactions on VLSI, vol. 1, no. 4, pp. 432-440,

December 1993.

[8] C. H. Roth, Jr., Fundamentals of Logic Design,

5th ed, Thomson Engineering, 2004.

[9] R. L. Rudell, "Multiple‐Valued Logic

Minimization for PLA Synthesis," Memorandum

No. UCB/ERL M86-65 (Berkeley), 1986.

[10] C. E. Shannon, "A Symbolic Analysis of Relay

and Switching Circuits," Trans. AIEE. pp

713-723, 1957.

- 19 -

김 은 기 (Eungi Kim)

∙정회원

∙Indiana Univ. of Pennsylvania

(BS) (Computer Science)

∙Illinois State University (MS)

(Applied Computer Science)

∙ University of North Texas (Ph.D Candidate in

Information Science)

∙ 남서울 대학교 정보통신공학과 외국인교수

∙ 관심분야: Information Retrieval, Digital Systems

