• Title/Summary/Keyword: BAX and BCL-2 expression

Search Result 660, Processing Time 0.031 seconds

Apoptotic Effect of Luteolin Isolated from Scutellaria barbata (반지련으로 부터 분리한 luteolin의 세포고사효과)

  • Lee, Eun-Ok;Kim, Jin-Hyung;Ahn, Kyoo-Seok;Park, Young-Doo;Kim, Sung-Hoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.4
    • /
    • pp.955-959
    • /
    • 2005
  • We previously demonstrated that the methylene chloride fraction of Scutellaria barbata suppessed human leukemic U937 cell proliferation by inducing apoptosis. In the present study, we have isolated luteolin from Scutellaria barbata and evaluated its apoptotic mechanism in Lewis lung carcinoma cells. Luteolin inhibited the proliferation of Lewis lung carcinoma cells in a concentration-dependent manner. Luteolin effectively increased the portion of $sub-G_1$ DNA content (apoptotic portion) and apoptotic Annexin-V positive cells in a concentration-dependent manner by FACS analysis. Caspase 9 and caspase 3 were activated and PARP was effectively cleaved by luteolin. It also increased the ratio of Bax to Bcl-2 through the decrease of Bcl-2 expression by Western blotting and reduced mitochondrial membrane potential following TMRE staining. These results suggest that luteolin can induce apoptosis through the mitochondrial mediated pathway.

Relationship between Cell Death and Oxidative Stress in the effect of benzene in Cultured Lung Epithelial Cells (폐 대식세포주에서 벤젠에 의한 세포 사멸 효과와 산화성 스트레스 관련성)

  • Lim, Jae-Chung;Kim, Jong-Choon;Park, Soo-Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.4
    • /
    • pp.421-426
    • /
    • 2010
  • Benzene is one of volatile environmental pollutants to induce asthma and allergy in respiratory system. The airway epithelium is a physical barrier to inhaled toxicants and particulates. However, the effect of benzene in lung epithelial cell viability has not been elucidated. Thus, this study was conducted to investigate the effect of benzene on apoptosis in A549 cells, lung epithelial cell line. In this study, benzene decreased cell viability of A549 cells in a dose-dependent manner (> $10{\mu}M$). Benzene-induced decrease of cell viability was blocked by the treatment of antioxidants (vitamin C and NAC). Indeed, benzene induced lipid peroxide formation in A549 cells. Benzene decreased Bcl-2 expression but increased Bax expression in A549 cells. In addition, benzene also increased the cleaved form of caspase-3. In conclusion, benzene induced apoptosis via oxidative stress in cultured epithelial cells.

Quercetin ameliorates glutamate toxicity-induced neuronal cell death by controlling calcium-binding protein parvalbumin

  • Kang, Ju-Bin;Park, Dong-Ju;Shah, Murad-Ali;Koh, Phil-Ok
    • Journal of Veterinary Science
    • /
    • v.23 no.2
    • /
    • pp.26.1-26.12
    • /
    • 2022
  • Background: Glutamate is the main excitatory neurotransmitter. Excessive glutamate causes excitatory toxicity and increases intracellular calcium, leading to neuronal death. Parvalbumin is a calcium-binding protein that regulates calcium homeostasis. Quercetin is a polyphenol found in plant and has neuroprotective effects against neurodegenerative diseases. Objectives: We investigated whether quercetin regulates apoptosis by modulating parvalbumin expression in glutamate induced neuronal damage. Methods: Glutamate was treated in hippocampal-derived cell line, and quercetin or vehicle was treated 1 h before glutamate exposure. Cells were collected for experimental procedure 24 h after glutamate treatment and intracellular calcium concentration and parvalbumin expression were examined. Parvalbumin small interfering RNA (siRNA) transfection was performed to detect the relation between parvalbumin and apoptosis. Results: Glutamate reduced cell viability and increased intracellular calcium concentration, while quercetin preserved calcium concentration and neuronal damage. Moreover, glutamate reduced parvalbumin expression and quercetin alleviated this reduction. Glutamate increased caspase-3 expression, and quercetin attenuated this increase in both parvalbumin siRNA transfected and non-transfected cells. The alleviative effect of quercetin was statistically significant in non-transfected cells. Moreover, glutamate decreased bcl-2 and increased bax expressions, while quercetin alleviated these changes. The alleviative effect of quercetin in bcl-2 family protein expression was more remarkable in non-transfected cells. Conclusions: These results demonstrate that parvalbumin contributes to the maintainace of intracellular calcium concentration and the prevention of apoptosis, and quercetin modulates parvalbumin expression in glutamate-exposed cells. Thus, these findings suggest that quercetin performs neuroprotective function against glutamate toxicity by regulating parvalbumin expression.

The Sanguinarine Apoptosis Induction of Hep3B Human Hepatocellular Carcinoma Cells is Dependent on the Activation of Caspase (Sanguinarine에 의한 Hep3B 인체 간암세포의 apoptosis 유도에 관한 연구)

  • Han, Min Ho;Choi, Sung Hyun;Hong, Su Hyun;Park, Dong Il;Choi, ung Hyun
    • Journal of Life Science
    • /
    • v.27 no.11
    • /
    • pp.1340-1348
    • /
    • 2017
  • Sanguinarine is a benzophenanthridine alkaloid derived from the roots of Sanguinaria canadensis L., which is used for the purpose of treating various diseases. Although studies of anticancer activities have been performed using various cancer cell lines, the phenomenon of inducing apoptosis in cancer cells by using sanguinarine requires more research. Therefore, this study investigated the anti-cancer activities and related mechanisms of sanguinarine used with Hep3B human hepatocellular carcinoma cells in terms of the regulation of apoptosis. Sanguinarine inhibited the proliferation of Hep3B cells in a concentration-dependent manner, which was associated with the induction of apoptosis. Sanguinarine also increased the activity of caspase-3, which is a typical effector caspase, and the activities of caspase-8 and caspase-9, which are key when initiating extrinsic and intrinsic apoptosis pathways, respectively. In addition, sanguinarine increased the expression of death receptor-related genes and pro-apoptotic BAX, which belongs to the Bcl-2 family, while suppressing the expression of anti-apoptotic Bcl-2. Sanguinarine promoted the truncation of Bid and enhanced the release of cytochrome c from the mitochondria to the cytoplasm due to a loss of mitochondrial membrane potential. Furthermore, the reduction of a survival rate that was induced by sanguinarine and the induction of apoptosis disappeared with the inhibition of artificial caspase activity. Therefore, the results of the study indicated that sanguinarine-induced apoptosis in Hep3B cells involves both extrinsic and intrinsic pathways; such apoptosis is a caspase-dependent phenomenon.

Involvement of Oxidative Stress in Formaldehyde-induced Apoptosis in Cultured Lung Macrophage Cells (폐 대식세포주에서 포름알데히드에 의한 세포 사멸 효과에 대한 산화성 스트레스 관련성)

  • Park, Soo-Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.3
    • /
    • pp.295-300
    • /
    • 2009
  • Formaldehyde (FA) is an important irritant compound in pesticide to induce asthma and allergy in respiratory system. Alveolar macrophage is also an pivotal cell in the immune response of respiratory system. However, the effect of FA in macrophage cell viability has not been elucidated. Thus, this study was conducted to investigate the effect of FA on apoptosis in Raw 264.7 cells, alveolar macrophage cell line. In this study, FA decreased cell viability of lung alveolar macrophage cells in a dose-dependent manner (>$100{\mu}M$). FA-induced decrease of cell viability was blocked by the treatment of antioxidants (vitamin C, NAC, and catalase). Indeed, FA induced lipid peroxide formation in Raw 264.7 cells. FA decreased Bcl-2 expression but increased Bax expression in lung alveloar macrophage cells. In addition, FA also increased the cleaved form of caspase-3. In conclusion, FA induced apoptosis via oxidative stress in cultured Raw 264.7 cells.

Mechanisms of Siegesbeckia Glabrescens-induced Smooth Muscle Cell Apoptosis: Role of iNOS and PKC${\alpha}$ (희첨의 iNOS 발현과 PKC${\alpha}$ 억제를 통한 혈관평활근세포의 apoptosis 유도)

  • Lee, Seung-Yeul;Jun, Soo-Young;Kim, Jong-Bong;Jang, Hyo-Oil;Kim, Gil-Whon;Shin, Heung-Mook
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.5
    • /
    • pp.1233-1240
    • /
    • 2006
  • We have recently demonstrated that Siegesbeckia glabrescens(SG), a herbal medicine, induces apoptosis via nitric oxide(NO) production in human aortic smooth muscle cells(HASMCS). However, the molecular pathways involved in SG-mediated apoptosis are not fully understand. In the present study, we investigated the cellular mechanisms of SG-induced apoptosis in HASMCS. SG induced NO production through inducible nitric oxide synthase(iNOS) induction. The apoptotic effect of SG was attenuated by L-NNA, a NOS inhibitor. In the presence of L-NNA, the degradation of procaspase-3 by SG was inhibited. SG treatment induced a decrease in Bcl-2 expression but did not affect the expression of Bax. In addition, SG treatment evoked both down-regulation of PKC ${\alpha}$ and inhibition of PKC ${\alpha}$ phosphorylation. These downregulations were reversed by addition of L-NNA. It seems likely to De a downregulation of PKC${\alpha}$ due to long term treatment with PMA. Taken together, these results suggest that apoptotic effects of SG may be due to NO production via iNOS mRNA expression. Furthermore, Bcl-2 and PKC${\alpha}$ downregulation, and caspase-3 activation may be involved in the mechanisms for apoptotic effects by SG.

Fungal Taxol Extracted from Cladosporium oxysporum Induces Apoptosis in T47D Human Breast Cancer Cell Line

  • Raj, Kathamuthu Gokul;Sambantham, Shanmugam;Manikanadan, Ramar;Arulvasu, Chinnansamy;Pandi, Mohan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.16
    • /
    • pp.6627-6632
    • /
    • 2014
  • Purpose: The present study concerns molecular mechanisms involved in induction of apoptosis by a fungal taxol extracted from the fungus Cladosporium oxysporum in T47D human breast cancer cells. Materials and Methods: Apoptosis-induced by the fungal taxol was assessed by MTT assay, nuclear staining, DNA fragmentation, flow cytometry and pro- as well as anti-apoptotic protein expression by Western blotting. Results: Our results showed inhibition of T47D cell proliferation with an $IC_{50}$ value of $2.5{\mu}M/ml$ after 24 h incubation. It was suggested that the extract may exert its anti-proliferative effect on human breast cancer cell line by suppressing growth, arresting through the cell cycle, increase in DNA fragmentation as well as down-regulation of the expression of NF-${\kappa}B$, Bcl-2 and Bcl-XL and up-regulation of pro-apoptotic proteins like Bax, cyt-C and caspase-3. Conclusions: We propose that the fungal taxol contributes to growth inhibition in the human breast cancer cell through apoptosis induction via a mitochondrial mediated pathway, with possible potential as an anticancer therapeutic agent.

Protective Effects of Samul-tang on ${H_2O_2}-induced$ Cell Apoptosis in Cultured Cardiomyoblast Cells ($H_2O_2$에 의한 배양심근세포고사에 미치는 사물탕의 방어효과)

  • 박종운;한상혁;김도환;문병순
    • The Journal of Korean Medicine
    • /
    • v.22 no.4
    • /
    • pp.58-68
    • /
    • 2001
  • Objectives : This study was designed to investigate the protective mechanisms of Samul-tang (SMT) on $H_2O_2$-induced toxicity in H9c2 cardiomyoblast cells. Methods : The cultured cells were pretreated with SMT and exposed to $H_2O_2$. The cell damage was assessed by using MTT assay. Also, we used Hoechst staining, Western blotting analysis. Results : SMT significantly reduced both $H_2O_2$-induced cell death and chromatin fragmentation. The decrease of Bcl2 expression by $H_2O_2$ was inhibited by SMT. In addition, the increase of Bax expression was also inhibited by SMT. In particular, Fas expression, which is generally recognized as cell death inducing signal by Fas/FasL interaction, was markedly decreased by $H_2O_2$ in a time-dependent manner, whereas this decrease was completely prevented by SMT. The cotreatment of SMT and $H_2O_2$ in H9c2 cells also induced the phosphorylation of ERK in a time-dependent manner. Moreover, PD098059, a specific inhibitor of ERKl/2, attenuated the protective effect of SMT on $H_2O_2$-induced toxicity in H9c2 cardiomyoblast cells. Furthermore, the protective effect of SMT was significantly blocked by treatment of SB203580, a specific inhibitor of p38. Conclusions : Taken together, this study suggests that the protective effects of the water extract of SMT against oxidative damages may be mediated by the modulation of Bel2 and Bax expression via the regulation of ERK and p38 signaling pathway.

  • PDF

Effects of different parts of Angelica gigas Nakai on brain damages and neuronal death in transient middle artery occlusion/reperfusion-induced ischemic rats (허혈성 뇌졸중 흰쥐에서 당귀의 부위에 따른 뇌신경보호효과 비교 연구)

  • Shin, Yong-Joon;Park, Yong-Ki
    • The Korea Journal of Herbology
    • /
    • v.29 no.6
    • /
    • pp.85-93
    • /
    • 2014
  • Objectives : We compared with the effects of different parts (root head, root body and hairy root) of Angelica gigas Nakai (Angelicae Gigantis Radix, AG) with on middle cerebral artery occlusion(MCAO)-induced ischemic rats, and on LPS-induced inflammatory response in BV2 microglia. Methods : The 30% ethanol and water extracts of different parts of AG were prepared. Each extract (50 and 100 mg/kg) was administrated intraperitoneally once in MCAO-induced ischemic rats. We measured infarction volumes by TTC staining, and investigated the expression of iNOS, Bax, Bcl-2 and caspase-3 by Western blot. BV2 cells were treated with each extract for 30 min, and then stimulated with LPS. The levels of NO was measured by Griess assay. The expression of iNOS, Cox-2 and proinflammatory cytokines ($TNF-{\alpha}$, $IL-1{\beta}$, and IL-6) were determined RT-PCR and Western blot. The phosphorylation of ERK1/2 and JNK MAPK was determined by Western blot. Results : Among different parts of AG, the 30% ethanol and water extracts of hairy root significantly decreased infarction volume in ischemic brains and inhibited the expression of iNOS, bax and caspase-3. The extracts of hairy root significantly inhibited LPS-induced production of NO, $TNF-{\alpha}$ and IL-6 in BV2 cells, and suppressed the expression of iNOS and COX-2. The hairy root extracts attenuated LPS-induced phosphorylation of ERK1/2 and JNK MAPK in BV2 cells. Conclusions : Our results indicate that the root hairy of AG has a good neuroprotective and anti-inflammatory effects in ischemic stroke compared to other parts.

Biological Markers as Predictors of Radiosensitivity in Syngeneic Murine Tumors (동계 마우스 종양의 방사선 감수성 예측인자로서의 생물학적 표지자)

  • Chang Sei-Kyung;Kim Sung-Hee;Shin Hyun-Soo;Seong Jin-Sil
    • Radiation Oncology Journal
    • /
    • v.24 no.2
    • /
    • pp.128-137
    • /
    • 2006
  • Purpose: We investigated whether a relationship exists between tumor control dose 50 ($TCD_{50}$) or tumor growth delay (TGD) and radiation induced apoptosis (RIA) in syngeneic murine tumors. Also we investigated the biological markers that can predict radiosensitivity in murine tumor system through analysis of relationship between $TCD_{50}$, TGD, RIA and constitutive expression levels of the genetic products regulating RIA. Materials and Methods: Syngeneic murine tumors such as ovarian adenocarcinoma, mammary carcinoma, squamous cell carcinoma, fibrosarcoma, hepatocarcinoma were used In this study. C3H/HeJ mice were bred and maintained in our specific pathogen free mouse colony and were $8{\sim}12$ weeks old when used for the experiments. The tumors, growing in the right hind legs of mice, were analyzed for $TCD_{50}$, TGD, and RIA at 8 mm in diameter. The tumors were also analyzed for the constitutive expression levels of $p53,\;p21^{WAF1/CIP1},\;BAX,\;Bcl-2,\;Bcl-X_L,\;Bcl-X_S$, and p34. Correlation analysis was peformed whether the level of RIA were correlated with $TCD_{50}$ or TGD, and the constitutive expression levels of genetic products regulating RIA were correlated with $TCD_{50}$, TGD, RIA. Results: The level of RIA showed a significant positive correlation (R=0.922, p=0.026) with TGD, and showed a trend to correlation (R=-0.848), marginally significant correlation with $TCD_{50}$ (p=0.070). It indicates that tumors that respond to radiation with high percentage of apoptosis were more radiosensitive. The constitutive expression levels of $p21^{WAF1/CIP1}$ and 34 showed a significant correlation either with $TCD_{50}$ (R=0.893, p=0.041 and R=0.904, p=0.035) or with TGD (R=-0.922, p=0.026 and R=-0.890 p=0.043). The tumors with high constitutive expression levels of $p21^{WAF1/CIP1}$ or p34 were less radiosensitive than those with low expression. Conclusion: Radiosensitivity may be predicted with the level of RIA in murine tumors. The constitutive expression levels of $p21^{WAF1/CIP1}$ or p34 can be used as biological markers which predict the radiosensitivity.