Browse > Article
http://dx.doi.org/10.5352/JLS.2017.27.11.1340

The Sanguinarine Apoptosis Induction of Hep3B Human Hepatocellular Carcinoma Cells is Dependent on the Activation of Caspase  

Han, Min Ho (Department of Applied Research, National Marine Biodiversity Institute of Korea)
Choi, Sung Hyun (Department of System Management, Korea Lift College)
Hong, Su Hyun (Open Laboratory for Muscular and Skeletal Disease, and Department of Biochemistry, Dongeui University College of Korean Medicine)
Park, Dong Il (Department of Internal Medicine, Dongeui University College of Korean Medicine)
Choi, ung Hyun (Open Laboratory for Muscular and Skeletal Disease, and Department of Biochemistry, Dongeui University College of Korean Medicine)
Publication Information
Journal of Life Science / v.27, no.11, 2017 , pp. 1340-1348 More about this Journal
Abstract
Sanguinarine is a benzophenanthridine alkaloid derived from the roots of Sanguinaria canadensis L., which is used for the purpose of treating various diseases. Although studies of anticancer activities have been performed using various cancer cell lines, the phenomenon of inducing apoptosis in cancer cells by using sanguinarine requires more research. Therefore, this study investigated the anti-cancer activities and related mechanisms of sanguinarine used with Hep3B human hepatocellular carcinoma cells in terms of the regulation of apoptosis. Sanguinarine inhibited the proliferation of Hep3B cells in a concentration-dependent manner, which was associated with the induction of apoptosis. Sanguinarine also increased the activity of caspase-3, which is a typical effector caspase, and the activities of caspase-8 and caspase-9, which are key when initiating extrinsic and intrinsic apoptosis pathways, respectively. In addition, sanguinarine increased the expression of death receptor-related genes and pro-apoptotic BAX, which belongs to the Bcl-2 family, while suppressing the expression of anti-apoptotic Bcl-2. Sanguinarine promoted the truncation of Bid and enhanced the release of cytochrome c from the mitochondria to the cytoplasm due to a loss of mitochondrial membrane potential. Furthermore, the reduction of a survival rate that was induced by sanguinarine and the induction of apoptosis disappeared with the inhibition of artificial caspase activity. Therefore, the results of the study indicated that sanguinarine-induced apoptosis in Hep3B cells involves both extrinsic and intrinsic pathways; such apoptosis is a caspase-dependent phenomenon.
Keywords
Apoptosis; caspase; HepG2 cells; sanguinarine; tBid;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cecen, E., Altun, Z., Ercetin, P., Aktas, S. and Olgun, N. 2014. Promoting effects of sanguinarine on apoptotic gene expression in human neuroblastoma cells. Asian Pac. J. Cancer Prev. 15, 9445-9451.   DOI
2 Chang, M. C., Chan, C. P., Wang, Y. J., Lee, P. H., Chen, L. I., Tsai, Y. L., Lin, B. R., Wang, Y. L. and Jeng, J. H. 2007. Induction of necrosis and apoptosis to KB cancer cells by sanguinarine is associated with reactive oxygen species production and mitochondrial membrane depolarization. Toxicol. Appl. Pharmacol. 218,143-151.   DOI
3 Choi, W. Y., Kim, G. Y., Lee, W. H. and Choi, Y. H. 2008. Sanguinarine, a benzophenanthridine alkaloid, induces apoptosis in MDA-MB-231 human breast carcinoma cells through a reactive oxygen species-mediated mitochondrial pathway. Chemotherapy 54, 279-287.   DOI
4 Choi, Y. H., Choi, W. Y., Hong, S. H., Kim, S. O., Kim, G. Y., Lee, W. H. and Yoo, Y. H. 2009. Anti-invasive activity of sanguinarine through modulation of tight junctions and matrix metalloproteinase activities in MDA-MB-231 human breast carcinoma cells. Chem. Biol. Interact. 179, 185-191.   DOI
5 Cragg, G. M. and Newman, D. J. 2005. Plants as a source of anti-cancer agents. J. Ethnopharmacol. 100, 72-79.   DOI
6 Decker, P. and Muller, S. 2002. Modulating poly (ADP-ribose) polymerase activity: potential for the prevention and therapy of pathogenic situations involving DNA damage and oxidative stress. Curr. Pharm. Biotechnol. 3, 275-283.   DOI
7 Eun, J. P. and Koh, G. Y. 2004. Suppression of angiogenesis by the plant alkaloid, sanguinarine. Biochem. Biophys. Res. Commun. 317, 618-624.   DOI
8 Billen, L. P., Shamas-Din, A. and Andrews, D. W. 2008. Bid: a Bax-like BH3 protein. Oncogene 27, S93-104.   DOI
9 Frankos, V. H., Brusick, D. J., Johnson, E. M., Maibach, H. I., Munro, I., Squire, R. A. and Weil, C. S. 1990. Safety of Sanguinaria extract as used in commercial toothpaste and oral rinse products. J. Can. Dent. Assoc. 56, S41-47.
10 Firatli, E., Unal, T., Onan, U. and Sandalli, P. 1994. Antioxidative activities of some chemotherapeutics. A possible mechanism in reducing gingival inflammation. J. Clin. Periodontol. 21, 680-683.   DOI
11 Fridlender, M., Kapulnik, Y. and Koltai, H. 2015. Plant derived substances with anti-cancer activity: from folklore to practice. Front. Plant Sci. 6, 799.
12 Fulda, S. and Debatin, K. M. 2006. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25, 4798-4811.   DOI
13 Gaziano, R., Moroni, G., Bue, C., Miele, M. T., Sinibaldi-Vallebona, P. and Pica, F. 2016. Antitumor effects of the benzophenanthridine alkaloid sanguinarine: Evidence and perspectives. World J. Gastrointest. Oncol. 8, 30-39.   DOI
14 Han, M. H., Yoo, Y. H. and Choi, Y. H. 2008. Sanguinarineinduced apoptosis in human leukemia U937 cells via Bcl-2 downregulation and caspase-3 activation. Chemotherapy 54, 157-165.   DOI
15 Gupta, S. C., Kim, J. H., Prasad, S. and Aggarwal, B. B. 2010. Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer Metastasis Rev. 29, 405-434.   DOI
16 Hajra, K. M. and Liu, J. R. 2004. Apoptosome dysfunction in human cancer. Apoptosis 9, 691-704.   DOI
17 Han, M. H., Kim, G. Y., Yoo, Y. H. and Choi, Y. H. 2013. Sanguinarine induces apoptosis in human colorectal cancer HCT-116 cells through ROS-mediated Egr-1 activation and mitochondrial dysfunction. Toxicol. Lett. 220, 157-166.   DOI
18 Han, M. H., Kim, S. O., Kim, G. Y., Kwon, T. K., Choi, B. T., Lee, W. H. and Choi, Y. H. 2007. Induction of apoptosis by sanguinarine in C6 rat glioblastoma cells is associated with the modulation of the Bcl-2 family and activation of caspases through downregulation of extracellular signal-regulated kinase and Akt. Anticancer Drugs 18, 913-921.
19 Han, M. H., Park, C., Jin, C. Y., Kim, G. Y., Chang, Y. C., Moon, S. K., Kim, W. J. and Choi, Y. H. 2013. Apoptosis induction of human bladder cancer cells by sanguinarine through reactive oxygen species-mediated up-regulation of early growth response gene-1. PLoS One 8, e63425.   DOI
20 Hata, A. N., Engelman, J. A. and Faber, A. C. 2015. The BCL2 family: Key mediators of the apoptotic response to targeted anticancer therapeutics. Cancer Discov. 5, 475-487.   DOI
21 Hong, S. J., Jeong, S. S. and Song, K. B. 2005. Effects of sanguinaria in fluoride-containing dentifrices on the remineralisation of subsurface carious lesion in vitro. Int. Dent. J. 55, 128-132.   DOI
22 Matkar, S. S., Wrischnik, L. A. and Hellmann-Blumberg, U. 2008. Sanguinarine causes DNA damage and p53-independent cell death in human colon cancer cell lines. Chem. Biol. Interact. 172, 63-71.   DOI
23 Kantari, C. and Walczak, H. 2011. Caspase-8 and bid: caught in the act between death receptors and mitochondria. Biochim. Biophys. Acta. 1813, 558-563.   DOI
24 Kaufmann, T., Strasser, A. and Jost, P. J. 2012. Fas death receptor signalling: roles of Bid and XIAP. Cell Death Differ. 19, 42-50.   DOI
25 Lee, T. K., Park, C., Jeong, S. J., Jeong, M. J., Kim, G. Y., Kim, W. J. and Choi, Y. H. 2016. Sanguinarine induces apoptosis of human oral squamous cell carcinoma KB cells via inactivation of the PI3K/Akt signaling pathway. Drug Dev. Res. 77, 227-240.   DOI
26 Lee, J. S., Jung, W. K., Jeong, M. H., Yoon, T. R. and Kim, H. K. 2012. Sanguinarine induces apoptosis of HT-29 human colon cancer cells via the regulation of Bax/Bcl-2 ratio and caspase-9-dependent pathway. Int. J. Toxicol. 31,70-77.   DOI
27 Li, W., Li, H., Mu, Q., Zhang, H., Yao, H., Li, J. and Niu, X. 2014. Protective effect of sanguinarine on LPS-induced endotoxic shock in mice and its effect on LPS-induced COX-2 expression and COX-2 associated PGE2 release from peritoneal macrophages. Int. Immunopharmacol. 22, 311-317.   DOI
28 Miao, F., Yang, X. J., Zhou, L., Hu, H. J., Zheng, F., Ding, X. D., Sun, D. M., Zhou, C. D. and Sun, W. 2011. Structural modification of sanguinarine and chelerythrine and their antibacterial activity. Nat. Prod. Res. 25, 863-875.   DOI
29 Miller, R. A., McIver, J. E. and Gunsolley, J. C. 1988. Effects of sanguinaria extract on plaque retention and gingival health. J. Clin. Orthod. 22, 304-307.
30 Nakajima, Y. I. and Kuranaga, E. 2017. Caspase-dependent non-apoptotic processes in development. Cell Death Differ. 24, 1422-1430.   DOI
31 Vlachojannis, C., Magora, F. and Chrubasik, S. 2012. Rise and fall of oral health products with Canadian bloodroot extract. Phytother. Res. 26, 1423-1426.
32 Pallichankandy, S., Rahman, A., Thayyullathil, F. and Galadari, S. 2015. ROS-dependent activation of autophagy is a critical mechanism for the induction of anti-glioma effect of sanguinarine. Free Radic. Biol. Med. 89, 708-720.   DOI
33 Park, S. Y., Jin, M. L., Kim, Y. H., Lee, S. J. and Park, G. 2014. Sanguinarine inhibits invasiveness and the MMP-9 and COX-2 expression in TPA-induced breast cancer cells by inducing HO-1 expression. Oncol. Rep. 31, 497-504.   DOI
34 Senchina, D. S., Flinn, G. N., McCann, D. A., Kohut, M. L. and Shearn, C. T. 2009. Bloodroot (Sanguinaria canadensis L., Papaveraceae) enhances proliferation and cytokine production by human peripheral blood mononuclear cells in an in vitro model. J. Herbs Spices Med. Plants 15, 45.   DOI
35 Slee, E. A., Zhu, H., Chow, S. C., MacFarlane, M., Nicholson, D. W. and Cohen, G. M. 1996. Benzyloxycarbonyl-Val- Ala-Asp (OMe) fluoromethylketone (Z-VAD.FMK) inhibits apoptosis by blocking the processing of CPP32. Biochem. J. 315, 21-24.   DOI
36 Tummers, B. and Green, D. R. 2017. Caspase-8: regulating life and death. Immunol. Rev. 277, 76-89.   DOI
37 Vrba, J., Hrbac, J., Ulrichova, J. and Modriansky, M. 2004. Sanguinarine is a potent inhibitor of oxidative burst in DMSO-differentiated HL-60 cells by a non-redox mechanism. Chem. Biol. Interact. 147, 35-37.   DOI
38 Zhang, R., Wang, G., Zhang, P. F., Zhang, J., Huang, Y. X., Lu, Y. M., Da, W., Sun, Q. and Zhu, J. S. 2017. Sanguinarine inhibits growth and invasion of gastric cancer cells via regulation of the DUSP4/ERK pathway. J. Cell. Mol. Med. 21, 1117-1127.   DOI
39 Wang, Q., Dai, P., Bao, H., Liang, P., Wang, W., Xing, A. and Sun, J. 2017. Anti-inflammatory and neuroprotective effects of sanguinarine following cerebral ischemia in rats. Exp. Ther. Med. 13, 263-268.   DOI
40 Yang, X. J., Miao, F., Yao, Y., Cao, F. J., Yang, R., Ma, Y. N., Qin, B. F. and Zhou, L. 2012. In vitro antifungal activity of sanguinarine and chelerythrine derivatives against phytopathogenic fungi. Molecules 17, 13026-13035.   DOI
41 Basini, G., Bussolati, S., Santini, S. E. and Grasselli, F. 2007. Sanguinarine inhibits VEGF-induced angiogenesis in a fibrin gel matrix. Biofactors 29, 11-18.   DOI
42 Ahsan, H., Reagan-Shaw, S., Breur, J. and Ahmad, N. 2007. Sanguinarine induces apoptosis of human pancreatic carcinoma AsPC-1 and BxPC-3 cells via modulationsin Bcl-2 family proteins. Cancer Lett. 249, 198-208.   DOI