Mechanisms of Siegesbeckia Glabrescens-induced Smooth Muscle Cell Apoptosis: Role of iNOS and PKC${\alpha}$

희첨의 iNOS 발현과 PKC${\alpha}$ 억제를 통한 혈관평활근세포의 apoptosis 유도

  • Lee, Seung-Yeul (Department of Physiology, College of Oriental Medicine, Dongguk University) ;
  • Jun, Soo-Young (Department of Physiology, College of Oriental Medicine, Dongguk University) ;
  • Kim, Jong-Bong (Department of Physiology, College of Oriental Medicine, Dongguk University) ;
  • Jang, Hyo-Oil (Department of Physiology, College of Oriental Medicine, Dongguk University) ;
  • Kim, Gil-Whon (Department of Physiology, College of Oriental Medicine, Dongguk University) ;
  • Shin, Heung-Mook (Department of Physiology, College of Oriental Medicine, Dongguk University)
  • 이승렬 (동국대학교 한의과대학 생리학교실) ;
  • 전수영 (동국대학교 한의과대학 생리학교실) ;
  • 김종봉 (동국대학교 한의과대학 생리학교실) ;
  • 장효일 (동국대학교 한의과대학 생리학교실) ;
  • 김길훤 (동국대학교 한의과대학 생리학교실) ;
  • 신흥묵 (동국대학교 한의과대학 생리학교실)
  • Published : 2006.10.25

Abstract

We have recently demonstrated that Siegesbeckia glabrescens(SG), a herbal medicine, induces apoptosis via nitric oxide(NO) production in human aortic smooth muscle cells(HASMCS). However, the molecular pathways involved in SG-mediated apoptosis are not fully understand. In the present study, we investigated the cellular mechanisms of SG-induced apoptosis in HASMCS. SG induced NO production through inducible nitric oxide synthase(iNOS) induction. The apoptotic effect of SG was attenuated by L-NNA, a NOS inhibitor. In the presence of L-NNA, the degradation of procaspase-3 by SG was inhibited. SG treatment induced a decrease in Bcl-2 expression but did not affect the expression of Bax. In addition, SG treatment evoked both down-regulation of PKC ${\alpha}$ and inhibition of PKC ${\alpha}$ phosphorylation. These downregulations were reversed by addition of L-NNA. It seems likely to De a downregulation of PKC${\alpha}$ due to long term treatment with PMA. Taken together, these results suggest that apoptotic effects of SG may be due to NO production via iNOS mRNA expression. Furthermore, Bcl-2 and PKC${\alpha}$ downregulation, and caspase-3 activation may be involved in the mechanisms for apoptotic effects by SG.

Keywords

References

  1. 高學敏. 中藥學. 北京, 北京中醫學院, p 155, 156, 1986
  2. 吳儀洛. 本草從新. 서울, 杏林書院, p 62, 1982
  3. 康秉秀, 金永坂. 本草學. 서울, 圖書出版 永林社, p 276, 277, 1944
  4. 黃宮繡. 本草求眞. 台北, 宏業書局有限公司, pp 129-130, 中華民國七十年
  5. Garg, U.C., Hassid, A. Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest., 83: 1774-1777, 1989 https://doi.org/10.1172/JCI114081
  6. Wollert, K.C., Drexler, H. Regulation of cardiac remodeling by nitric oxide: Focus on cardiac myocyte hypertrophy and apoptosis. Heart Failiure Reviews, 7: 317-325, 2002 https://doi.org/10.1023/A:1020706316429
  7. Isner, J.M., Kearney, M., Bortman, S., Passeri, J. Apoptosis in human atherosclerosis and restenosis. Circulation, 91: 2703-2711, 1995 https://doi.org/10.1161/01.CIR.91.11.2703
  8. Bennett, M.R., Evan, G.I., Schwartz, S.M. Apoptosis of human vascular smooth muscle cells derived from normal vessels and coronary atherosclerotic plaques. J Clin Invest, 95: 2266-2274, 1995 https://doi.org/10.1172/JCI117917
  9. Geng, Y.J., Libby, P. Evidence for apoptosis in advanced human atheroma: colocalization with interleukin-1beta- converting enzyme. Am J Pathol, 147: 251-266, 1995
  10. 남상수, 박동석. 豨薟약침 자극이 자발성 고혈압 흰쥐의 혈압에 미치는 영향 및 강압기전에 대한 연구. 대한한의학회지 18: 218-237, 1997
  11. 金昊顯, 申興黙, 金吉萱. 豨簽이 收縮된 血管에 미치는 影響. 東醫生理學會誌 10: 25-36, 1995
  12. 김호철. 생희첨과 주증희첨 추출물이 자발성 고혈압 흰쥐의 항고혈압작용에 미치는 영향. 본초학회지 13(1):53-58, 1998
  13. 김호현, 김길훤. 豨薟이 가토의 혈관내피세포성 이완인자에 미치는 영향. 대한한의학회지 18(2):15-32, 1997
  14. 신흥묵. 豨薟의 혈관이완 효능과 항산화 동태에 관한 연구. 대한한의학회지 21(1):77-83, 2000
  15. Scudiero, D.A., Shoemaker, R.H., Paul, K.D. A Monks, S Tierney, TH Nofziger, MJ Currens, D Seniff and MR Boyd. Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Research, 48: 4827-4833, 1988
  16. Griess, P. Bemerkungen zu der abhandlung der H.H. Weselsky und Benedikt "Ueber einige azoverbindungen." Chem. Ber, 12: 426, 1879 https://doi.org/10.1002/cber.187901201117
  17. Lowery, O.H. et al. Protein measurement with the Folin phenol reagent. J Biol Chem, 193: 265-275, 1951
  18. Wang, X., Christopher, G.A.M., Virginia, M.M. Induction and cDNA sequence of inducible nitric oxide synthase from canine aortic smooth muscle cells. Am J Physiol, 275: H1122-H1129, 1998
  19. Shin, H.G., Joey, V.B., Paul, C., Seenu, R., Davis, C.D., Richard, N.P., Ronald, G.W., Katherine, T.M. Molecular heterogeneity of protein kinase C expression in human ventricle. Cardiovascular Research, 48: 285-299, 2000 https://doi.org/10.1016/S0008-6363(00)00185-1
  20. Gene Bank Accesion No.: M13994, Human Bcl-2 complete CDS
  21. Wu, S., Ko, Y.S., Teng, M.S., Ko, Y.L., Hsu, L.A., Chueh, Chou, Y.Y., Liew, C.C., Lee. Y.S. Adriamycin-induced cardiomyocyte and endothelial cell apoptosis: in vitro and in vivo studies. J Mol Cell cardiol, 34: 1595-1607, 2002 https://doi.org/10.1006/jmcc.2002.2110
  22. Han, D.K., Haudenschild, C.C., Hong, M.K., Tinkle, B.T., Leon, M.B., Liau, G. Evidence for apoptosis in human atherogenesis and in a rat vascular injury model. Am J Pathol, 147: 267-277, 1995
  23. Isner, J.M., Kearney, M., Bortman, S., Passeri, J. Apoptosis in human atherosclerosis and restenosis. Circulation, 91: 2703-2711, 1995 https://doi.org/10.1161/01.CIR.91.11.2703
  24. Radomski, M.W., Rees, D.D., Dutra, A., Moncada, S. S-nitroso-glutathione inhibits platelet activation in vitro and in vivo. Br J Pharmacol, 107: 745-749, 1992 https://doi.org/10.1111/j.1476-5381.1992.tb14517.x
  25. Dimmeler, S., Haendeler, J., Nehls, M., Zeiher, A.M. Suppression of apoptosis by nitric oxide via inhibition of interleukin-1-beta converting enzyme (ICE)-like and cysteine protease protein(CPP)-32-like proteases. J Exp Med, 185: 601-607, 1997 https://doi.org/10.1084/jem.185.4.601
  26. Kim, Y.M., Talanian, R.V., Billiar, T.R. Nitric oxide inhibits apoptosis by preventing increases in caspase-3-like activity via two distinct mechanisms. J Biol Chem, 272: 31138-31148, 1997 https://doi.org/10.1074/jbc.272.49.31138
  27. Pollmann, M.J., Yamada, T., Horiuchi, M., Gibbons, G.H. Vasoactive substances regulate vascular smooth muscle cell apoptosis. Circ Res, 79: 748-756, 1996 https://doi.org/10.1161/01.RES.79.4.748
  28. Nishio, E., Fukushima, K., Shiozaki, M., Watanabe, Y. Nitric oxide donor SNAP induces apoptosis in smooth muscle cells through cGMP-independent mechanism. Biochem Biophys Res Com, 221: 163-168, 1996 https://doi.org/10.1006/bbrc.1996.0563
  29. Messmer, U.K., Bernhard, BRUNE. Nitric oxide-induced apoptosis: p53-dependent and p53-independent signaling pathways. Biochem J, 319: 299-305, 1995
  30. Filippov, G., Bloch, D.B., Bloch, K.D. Nitric oxide decreases stability of mRNAs encoding soluble guanylate cyclase subunits in rat pulmonary artery smooth muscle cells. J Clin Invest, 100: 942-948, 1997 https://doi.org/10.1172/JCI119610
  31. 신동훈. 豨薟의 Nitric Oxide 유리를 통한 평활근세포에서의 Apoptosis유도. 동국대학교 대학원, 2003
  32. Gruetter, C.A., Gruetter, D.Y., Lyon, J.E., Kadowitz, P.J., IG-Narro, L.J. Relationship between cyclic guanosine 3':5'-monophosphate formation and relaxation of coronary arterial smooth muscle by glyceryl trinitrate, nitroprusside, nitrite and nitric oxide: Effects of methyline blue and methemoglobin, J Pharmacol Exp Ther, 219: 181-186, 1981
  33. Gibbons, G.H., Dzau, V.J. Molecular therapy for vascular diseases. Science, 272: 689-693, 1996 https://doi.org/10.1126/science.272.5262.689
  34. De Caterin, R., Libby, P., Peng, H.B., Thannickal, V.J., Rajavashisth, T.B., Gimbrone, M.A. Jr, Shin, W.S., Liao, J.K. Nitric oxide decreases cytokine-induced endothelial activation. Nitric Oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest, 6: 60-68, 1995
  35. Matsuoka, H., Nakata, M., Kohno, K., Koga, Y., Nomura, G., Toshima, H., Imaizumi, T. Chronic L-arginine administration attenuates cardiac hypertrophy in spontaneously hypertensive rats. Hypertension, 27: 14-18, 1996 https://doi.org/10.1161/01.HYP.27.1.14
  36. Forstermann, U., Schmidt, HHHW, Pollock, J.S., Sheng, H., Mitchell, J.A., Warner, T.D., Nakane, M., Murad, F. Isofroms of nitric oxide synthase. Characterization and purification from different cell types. Biochem Pharmacol, 42: 1849-1857, 1991 https://doi.org/10.1016/0006-2952(91)90581-O
  37. Moncada, S., Palmer, R.M.J., Higgs, E.A. Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol Rev, 43: 109-142. 1991
  38. Nathan, C., Xie, Q. Nitric Oxide synthases: roles, tolls and controls. Cell, 78: 915-918, 1994 https://doi.org/10.1016/0092-8674(94)90266-6
  39. Nishio, E., Watanabe, Y. Glucose-induced down-regulation of NO production and inducible NOS expression in cultured rat aortic vascular smooth muscle cells: role of protein kinase C. Biochem Biophy Res Commun, 229: 857-863, 1996 https://doi.org/10.1006/bbrc.1996.1892
  40. 김정국, 김신우, 김수동, 서예경, 하승우, 김보완, 백운이, 권삼, 강승완. Streptozotocin 당뇨병 백서에서 당뇨병의 이환기간에 따른 대동맥의 이완능의 저하 및 oxygen free radical 에 의한 이완능의 손상정도. 대한내과학회지, 50: 19-26, 1996
  41. Calver A, Collier J, Vallance P. Inhibition and stimulation of nitric oxide synthase in the human forearm arterial bed of patients with insulin-dependent diabetes. J Clin Invest, 90: 2548-2554, 1992 https://doi.org/10.1172/JCI116149
  42. Johnstone MT, Creager SJ, Scales KM, Cusco JA, Lee BK, Creager MA. Impaired endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. Circulation, 88: 2510-2516, 1993 https://doi.org/10.1161/01.CIR.88.6.2510
  43. Sobrevia L, Mann GE. Dysfunction of the endothelial nitric oxide signaling pathway in diatetes and hyperglycemia. Experimental Physiol, 82: 423-452, 1997 https://doi.org/10.1113/expphysiol.1997.sp004038
  44. Park JY, Ha SW, King GL. The role of protein kinase C activation in the pathogenesis of diabetic vascular complications. Perit Dial Int, 19: S222-S227, 1999
  45. Moncada, S., and Higgs, E.A. Endogenous nitric oxide: Physiology, pathology and clinical relevance. Eur. J. Clin. Invest, 21: 361-374. 1991 https://doi.org/10.1111/j.1365-2362.1991.tb01383.x
  46. Masatora I, MD; Masayoshi S, MD; Fumiaki M, MD; Yukio H, MD. Transfection of inducible Nitric Oxide Synthase gene causes apoptosis in vascular smooth muscle cells. Circulation, 98: 1212-1218, 1998 https://doi.org/10.1161/01.CIR.98.12.1212
  47. Reed, J.C. Bcl-2 and the regulation of programmed cell death. J cell biol, 124: 1-6, 1994 https://doi.org/10.1083/jcb.124.1.1
  48. Oltvai, Z.N., Milliman, C.L., Korsmeyer, S.J. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax that accelerates programmed cell death. Cell, 74: 609-619, 1993 https://doi.org/10.1016/0092-8674(93)90509-O
  49. Sato, T., Hanada, M., Bodrug, S., Irie, S., Iwama, N., Boise, L.H., Thompson, C.B., Golemis, E., Fong, L., Wang, H.G., Reed, J.C. Interaction among members of the Bcl-2 protein family analyzed with a yeast two-hybrid syste. Proc Natl Acad Sci USA, 91: 9238-9242, 1994
  50. Huigsloot, M., Tijdens, R.B., van de Water, B. Inhibition of protein kinase C $\alpha$ enhances anticancer agent-induced loss of anchorage-independent growth regardless of protection against apoptosis by Bcl-2. Mol Pharmacol, 64: 965-973, 2003 https://doi.org/10.1124/mol.64.4.965
  51. Liu, J.P. Protein kinase C and its substrates. Mol Cell Endocrinol, 1161-29, 1996
  52. Mellor, H., Parker, P.J. The extended protein kinase C superfamily. Biochem J, 332: 281-292, 1998 https://doi.org/10.1042/bj3320281
  53. Sugden, P.H., Bogoyevitch, M.A. Intracellular signalling through protein kinases in the heart. Cardiovasc Res, 30: 478-492, 1995 https://doi.org/10.1016/S0008-6363(95)00096-8
  54. Harrington, E.O., Ware, J.A. Diversity of the protein kinase C gene family: Implications for cardiovascular disease. Trends Cardiovascular Medicine, 5: 193-199, 1995 https://doi.org/10.1016/1050-1738(95)00058-H
  55. Bareggi, R., Narducci, P., Grill, V., Lach, S., Martelli, A.M. Selective distribution of multiple protein kinase C isoforms in mouse cerebellar cortex. Biol Cell, 87: 55-63, 1996 https://doi.org/10.1016/S0248-4900(97)89837-1
  56. Disatnik, M.H., Buraggi, G., Mochly-Rosen, D. Localization of protein kinase C isozymes in cardiac myocytes. Exp Cell Res, 210: 287-327, 1994 https://doi.org/10.1006/excr.1994.1041
  57. Dekker, L.V., Parker, P.J. Protein kinase C-$\alpha$ question of specificity. Trends Biochem Sci, 19: 73-77, 1994 https://doi.org/10.1016/0968-0004(94)90038-8
  58. Zhang, Z.H., Johnson, J.A., Chen, L., EI-Sherif, N., Mochly- Rosen, D., Boutjdir, M. C2 region-derived peptides of beta-protein kinase C regulate cardiac $Ca^{2+}$ channels. Circ Res, 80: 720-729, 1997 https://doi.org/10.1161/01.RES.80.5.720
  59. Johnson, J.A., Mochly-Rosen, D. Inhibition of the spontaneous rate of contraction of neonatal cardiac myocytes by protein kinase C isozymes. A putative role for the epsilon isozyme. Circ Res, 76: 654-663, 1995 https://doi.org/10.1161/01.RES.76.4.654
  60. Kiley, S.C., Jaken, S., Whelan, R., Parker, P.J. Intracellular targeting of protein kinase C isoenzymes: functional implications. Biochem Soc Trans 23: 601-605, 1995 https://doi.org/10.1042/bst0230601
  61. PF, L.i., Christian, M., Hermann, H., Rainer, D., Rudiger, von H. Requirement for protein kinase C in reactive oxygen species-Induced apoptosiss of vascular smooth muscle cells. Circulation, 100: 967-973, 1999 https://doi.org/10.1161/01.CIR.100.9.967
  62. Ohanian, V., Ohanian, J., Shaw, L., Scarth, S., Parker, P.J., Heagerty, A.M. Identification of protein kinase C isoforms in rat mesenteric small arteries and their possible role in agonist-induced contraction. Circ Res, 78: 806-812, 1996 https://doi.org/10.1161/01.RES.78.5.806
  63. Jennifer, L.H., Christian, M.M., Wang, X.H., Gary, H.G. Hyperglycemia inhibits vascular smooth muscle cell apoptosis through a protein kianse C-dependent pathway. Circulation Research, 87: 574-580, 2000 https://doi.org/10.1161/01.RES.87.7.574
  64. Li, S.H., Freesia, L., Huang, Feng, O.P., Liu, J., Sharon, X.F., Thomas, M.M. Overexpression of protein kinase C $\alpha$ enhances lipopolysaccharide-induced nitric oxide formation in vascular smooth muscle cell. J. Cell. Physiol, 176: 402-411, 1998 https://doi.org/10.1002/(SICI)1097-4652(199808)176:2<402::AID-JCP19>3.0.CO;2-4
  65. Guh, J.H., Hwang, T.L., Ko, F.N., Chueh, S.C., Lai, M.K., Teng, C.M. Antiproliferative effect in human prostatic smooth muscle cells by nitric oxide donor. Mol Pharmacol, 53: 467-474, 1998 https://doi.org/10.1124/mol.53.3.467