Biological Markers as Predictors of Radiosensitivity in Syngeneic Murine Tumors

동계 마우스 종양의 방사선 감수성 예측인자로서의 생물학적 표지자

  • Chang Sei-Kyung (Department of Radiation Oncology, Pochon CHA University, Bundang CHA General Hospital) ;
  • Kim Sung-Hee (Department of Radiation Oncology, Yonsei University College of Medicine) ;
  • Shin Hyun-Soo (Department of Radiation Oncology, Pochon CHA University, Bundang CHA General Hospital) ;
  • Seong Jin-Sil (Department of Radiation Oncology, Yonsei University College of Medicine)
  • 장세경 (포천중문의과대학교 분당차병원 방사선종양학과) ;
  • 김성희 (연세대학교 의과대학 방사선종양학교실) ;
  • 신현수 (포천중문의과대학교 분당차병원 방사선종양학과) ;
  • 성진실 (연세대학교 의과대학 방사선종양학교실)
  • Published : 2006.06.01

Abstract

Purpose: We investigated whether a relationship exists between tumor control dose 50 ($TCD_{50}$) or tumor growth delay (TGD) and radiation induced apoptosis (RIA) in syngeneic murine tumors. Also we investigated the biological markers that can predict radiosensitivity in murine tumor system through analysis of relationship between $TCD_{50}$, TGD, RIA and constitutive expression levels of the genetic products regulating RIA. Materials and Methods: Syngeneic murine tumors such as ovarian adenocarcinoma, mammary carcinoma, squamous cell carcinoma, fibrosarcoma, hepatocarcinoma were used In this study. C3H/HeJ mice were bred and maintained in our specific pathogen free mouse colony and were $8{\sim}12$ weeks old when used for the experiments. The tumors, growing in the right hind legs of mice, were analyzed for $TCD_{50}$, TGD, and RIA at 8 mm in diameter. The tumors were also analyzed for the constitutive expression levels of $p53,\;p21^{WAF1/CIP1},\;BAX,\;Bcl-2,\;Bcl-X_L,\;Bcl-X_S$, and p34. Correlation analysis was peformed whether the level of RIA were correlated with $TCD_{50}$ or TGD, and the constitutive expression levels of genetic products regulating RIA were correlated with $TCD_{50}$, TGD, RIA. Results: The level of RIA showed a significant positive correlation (R=0.922, p=0.026) with TGD, and showed a trend to correlation (R=-0.848), marginally significant correlation with $TCD_{50}$ (p=0.070). It indicates that tumors that respond to radiation with high percentage of apoptosis were more radiosensitive. The constitutive expression levels of $p21^{WAF1/CIP1}$ and 34 showed a significant correlation either with $TCD_{50}$ (R=0.893, p=0.041 and R=0.904, p=0.035) or with TGD (R=-0.922, p=0.026 and R=-0.890 p=0.043). The tumors with high constitutive expression levels of $p21^{WAF1/CIP1}$ or p34 were less radiosensitive than those with low expression. Conclusion: Radiosensitivity may be predicted with the level of RIA in murine tumors. The constitutive expression levels of $p21^{WAF1/CIP1}$ or p34 can be used as biological markers which predict the radiosensitivity.

목적: 방사선 감수성이 다양한 동계(syngeneic) 마우스 종양들을 대상으로 50% 종양억제선량과 종양성장지연 등 방사선 감수성을 대변하는 지표와 방사선에 의해 유도되는 아포토시스 간에 상관관계가 있는지 여부를 알아보고자 하였다. 또한 아포토시스와 관련된 여러 유전물질의 기본(constitutive) 발현수준을 측정한 후 이들 상호 간의 상관관계를 분석하여 방사선 감수성을 예측할 수 있는 생물학적 표지자를 알아보고자 하였다. 대상 및 방법: 동계 마우스 종양으로는 난소암 OCa-1, 유방암 MCa-K, 편평상피세포암 SCC-VII, 섬유육종 FSa-II, 간암 HCa-1을 사용하였고 이들은 PCR-SSCP 검사상 p53이 모두 자연형인 종양들이었고 주령 $8{\sim}10$ 주인 C3H/HeJ 웅성 마우스를 사용하였다. 50% 종양억제선량과 종양성장지연 및 방사선에 의해 유도되는 아포토시스를 측정하여 이들과 방사선에 의해 유도되는 아포토시스간의 상관관계를 분석하여 방사선에 의해 유도되는 아포토시스로 방사선 감수성을 예측할 수 있는지 여부를 알아보고, 또한 아포토시스와 관련된 유전물질 $053,\;p21^{WAF1/CIP1},\;BAX,\;Bcl-2,\;Bcl-x_L,\;Bcl-X_s,\;p34$ 등의 기본 발현양상 및 발현수준을 Western blot과 농도계측기로 측정한 후 이들 상호 간의 상관관계를 분석하였다. 결과: 방사선에 의해 유도된 아포토시스의 정도와 종양성장지연과의 사이에는 통계적으로 유의한 상관관계가 존재하였다(R=0.922, p=0.026). 50% 종양억제선량과의 사이에는 통계적 유의성은 변연수준이었으나(p=0.070) 상관관계의 경향을 보였다(R=-0.848). $p21^{WAF1/CIP1}$과 p34의 기본 발현수준과 50% 종양억제선량(R=0.893, p=0.041와 R=0.904, p=0.035) 및 종양성장지연(R=-0.922, p=0.026와 R=-0.890, p=0.043) 사이에는 통계적으로 유의한 상관관계가 존재하였다. 즉, $p21^{WAF1/CIP1}$과 p34의 기본 발현수준이 낮은 경우에 방사선 감수성이 높고, 기본 발현수준이 높은 경우에는 방사선 감수성이 낮은 상관관계가 존재함을 알 수 있었다. 결론: 방사선에 의해 유도된 아포토시스의 정도로 종양의 방사선 감수성을 예측하여 볼 수 있을 것으로 생각하며, 종양의 방사선 감수성을 예측할 수 있는 생물학적 표지자로 $p21^{WAF1/CIP1}$와 p34의 기본 발현수준이 이용될 수 있을 것으로 생각한다.

Keywords

References

  1. West CM, Davidson SE, Hendry JH, Hunter RD. Prediction of cervical carcinoma response to radiotherapy. Lancet 1991;338:818
  2. Hockel M, Knoop C, Schlenger K, et al. Intratumoral $pO_{2}$ predicts survival in advanced cancer of the uterine cervix. Radiother Oncol 1993;26:45-50 https://doi.org/10.1016/0167-8140(93)90025-4
  3. Begg AC, Hofland I, Van Glabekke M, Bartelink H, Horiot JC. Predictive value of potential doubling time for radiotherapy of head and neck tumor patients: Results from the EORTC cooperative trial 22851. Semin Radiat Oncol 1992;2: 22-25 https://doi.org/10.1016/S1053-4296(05)80046-3
  4. Hockel M, Schlenger K, Aral B, Mitze M, Schäffer U, Vaupel P. Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 1996;56:4509-4515
  5. Giaccia AJ, Brown JM, Wouters B, Denko N, Koumenis C. Cancer therapy and tumor physiology. Science 1998; 279:12-13
  6. Stausbol-Gron B, Overgaard J. Relationship between tumour cell in vitro radiosensitivity and clinical outcome after curative radiotherapy for squamous cell carcinoma of the head and neck. Radiother Oncol 1999;50:47-55 https://doi.org/10.1016/S0167-8140(98)00129-7
  7. Begg AC, Haustermans K, Hart AAM, et al. The value of pretreatment cell kinetic parameters as predictors for radiotherapy outcome in head and neck cancer: a multicenter analysis. Radiother Oncol 1999;50:13-23 https://doi.org/10.1016/S0167-8140(98)00147-9
  8. Stephens LC, Ang KK, Schultheiss TE, Milas L, Meyn RE. Apoptosis in irradiated murine tumors. Radiat Res 1991; 127:308-316 https://doi.org/10.2307/3577946
  9. Meyn RE, Stephens LC, Ang KK, et al. Heterogeneity in the development of apoptosis in irradiated murine tumours of different histologies. Int J Radiat Biol 1993;64:583-591 https://doi.org/10.1080/09553009314551801
  10. Wheeler JA, Stephens LC, Tornos C, et al. ASTRO research fellowship: Apoptosis as a predictor of tumor response to radiation in stage Ib cervical carcinoma. Int J Radiat Oncol Biol Phys 1995;32:1487-1493 https://doi.org/10.1016/0360-3016(95)00156-S
  11. Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW. Participation of p53 protein in the cellular response to DNA damage. Cancer Res 1991;51:6304-6311
  12. Lowe SW, Ruley HE, Jacks T, Housman DE. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 1993;74:957-967 https://doi.org/10.1016/0092-8674(93)90719-7
  13. El-Deiry Ws, Tokino T, Velculescu VE, et al. WAF1, a potential mediator of p53 tumor suppression. Cell 1993;75: 817-825 https://doi.org/10.1016/0092-8674(93)90500-P
  14. Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 1995; 80:293-299 https://doi.org/10.1016/0092-8674(95)90412-3
  15. Reed JC. Double identity for proteins of the bcl-2 family. Nature 1997;387:773-776 https://doi.org/10.1038/42867
  16. Lee JM, Bernstein A. p53 mutations increase resistance to ionizing radiation. Proc Natl Acad Sci USA 1993;90:5742-5746 https://doi.org/10.1073/pnas.90.12.5742
  17. McIlwrath AJ, Vasey PA, Ross GM, Brown R. Cell cycle arrests and radiosensitivity of human tumor cell lines: dependence on wild type p53 for radiosensitivity. Cancer Res 1994;54:3718-3722
  18. Kastan MB, Canman CE, Leonard CJ. p53, cell cycle control and apoptosis: implications for cancer. Cancer Metastasis Rev 1995;14:3-15 https://doi.org/10.1007/BF00690207
  19. Smith ML, Fornace Jr AJ. The two faces of tumor suppressor p53. Am J Pathol 1996;148:1019-1022
  20. Hawkins DS, Demers GW, Galloway DA. Inactivation of p53 enhances sensitivity to multiple chemotherapeutic agents. Cancer Res 1996;56:892-898
  21. Fan S, Smith ML, Rivert II DJ, et al. Disruption of p53 function sensitizes breast cancer MCF-7 cells to cisplatin and pentoxifylline. Cancer Res 1995;55:1649-1654
  22. Brachman DG, Beckett M, Graves D, Haraf D, Vokes E, Weichselbaum RR. p53 mutation does not correlate with radiosensitivity in 24 head and neck cancer cell lines. Cancer Res 1993;53:3667-3669
  23. Zhang W, Kornblau SM, Kobayashi T, Gambel A, Claxton D, Deisseroth AB. High levels of constitutive WAF1/ Cip1 protein are associated with chemoresistance in acute myelogenous leukemia. Clin Cancer Res 1995;1:1051-1057
  24. Waldman T, Lengauer C, Kinzler KW, Vogelstein B. Uncoupling of S phase and mitosis induced by anticancer agents in cells lacking p21. Nature 1996;381:713-716 https://doi.org/10.1038/381713a0
  25. Fan S, Chang JK, Smith ML, Duba D, Fornace Jr AJ, O'Connor PM. Cells lacking CIP1/WAF1 genes exhibit preferential sensitivity to cisplatin and nitrogen mustard. Oncogene 1997;14:2127-2136 https://doi.org/10.1038/sj.onc.1201052
  26. Saito Y, Milross CG, Hittelman WN, et al. Effect of radiation and paclitaxel on p53 expression in murine tumors sensitive or resistant to apoptosis induction. Int J Radiat Oncol Biol Phys 1997;38:623-631 https://doi.org/10.1016/S0360-3016(97)89488-6
  27. Waldman T, Zhang Y, Dillehay L, et al. Cell-cycle arrest versus cell death in cancer therapy. Nature Med 1997;3: 1034-1036 https://doi.org/10.1038/nm0997-1034
  28. Wouters BG, Giaccia AJ, Denko NC, Brown JM. Loss of p21Waf1/Cip1 sensitizes tumors to radiation by an apoptosis- independent mechanism. Cancer Res 1997;57:4703-4706
  29. Ruan S, Okcu MF, Ren JP, et al. Overexpressed WAF1/ Cip1 renders glioblastoma cells resistant to chemotherapy agents 1,3-bis (2-chloroethyl)-1-nitrosourea and cisplatin. Cancer Res 1998;58:1538-1543
  30. Stephens LC, Hunter NR, Ang KK, Milas L, Meyn RE. Development of apoptosis in irradiated murine tumors as a function of time and dose. Radiat Res 1993;135:75-80 https://doi.org/10.2307/3578399
  31. Milas L, Wike J, Hunter N, Volpe J, Basic I. Macrophage content of Murine sarcomas and carcinomas: associations with tumor growth parameters and tumor radiocurability. Cancer Res 1987;47:1069-1075
  32. Milas L, Hunter NR, Mason KA, Milross CG, Saito Y, Peters LJ. Role of reoxygenation in induction of enhancement of tumor radioresponse by paclitaxel. Cancer Res 1995; 55:3564-3568
  33. Silchenmyer WJ, Nelson WG, Slebos RJ, Kastan MB. Loss of a p53 associated G1 checkpoint dose not decrease cell survival following DNA damage. Cancer Res 1993;53: 4164-4168
  34. Pardo FS, Su M, Borek C, et al. Transfection of rat embryo cells with mutant p53 increases the intrinsic radiation resistance. Radiat Res 1994;140:180-185 https://doi.org/10.2307/3578901
  35. Russell KJ, Wiens LW, Demers GW, Dalloway DA, Plon SE, Groudine M. Abrogation of the G2 checkpoint results in differential radiosensitization of G1 checkpoint deficient and G1 checkpoint competent cells. Cancer Res 1995;55:1639-1642
  36. O'Connor PM, Jackman J, Jondle D, Bhatia K, Magrath I, Kohn KW. Role of the p53 tumor suppressor gene in cell cycle arrest and radiosensitivity of Burkitt's lymphoma cell lines. Cancer Res 1993;53:4776-4780
  37. Maity A, Kao GD, Muschel RJ, McKenna WG. Potential molecular targets for manipulating the radiation response. Int J Radiat Oncol Biol Phys 1997;37:639-653 https://doi.org/10.1016/S0360-3016(96)00598-6
  38. Hartwell LH, Kastan MB. Cell cycle control and cancer. Science 1994;266:1821-1828 https://doi.org/10.1126/science.7997877
  39. Jin P, Gu Y, Morgan DO. Role of inhibitory CDC2 phosphorylation in radiation induced G2 arrest in human cells. J Cell Biol 1996;134:963-970 https://doi.org/10.1083/jcb.134.4.963
  40. Wu HG, Kim IH. Significance of apoptotic cell death after $\gamma$- irradiation. J Korean Soc Ther Radiol Oncol 2001;19:252-258
  41. Leoncini L, Vecchio MTD, Megha T, et al. Correlation between apoptotic and proliferative indices in malignant non- Hodgkin's lymphomas. Am J Pathol 1993;142:755-763
  42. Lera J, Lara PC, Perez S, Cabrera JL, Santana C. Tumor proliferation, p53 expression, and apoptosis in laryngeal carcinoma. Cancer 1998;83:2493-2501 https://doi.org/10.1002/(SICI)1097-0142(19981215)83:12<2493::AID-CNCR13>3.0.CO;2-C
  43. Akimoto T, Seong J, Hunter NR, Buchmiller L, Mason K, Milas L. Association of increased radiocurability of murine carcinomas with low constitutive expression of $p21^{WAF1/CIP1}$ protein. Int J Radiat Oncol Biol Phys 1999;44:413-419 https://doi.org/10.1016/S0360-3016(99)00022-X
  44. Tamamoto T, Ohnishi K, Takahashi A, et al. Correlation between r-ray induced G2 arrest and radioresistance in two human cancer cells. Int J Radiat Oncol Biol Phys 1999;44: 905-909 https://doi.org/10.1016/S0360-3016(99)00072-3