• Title/Summary/Keyword: Auxiliary Variables

Search Result 97, Processing Time 0.023 seconds

Generalized Multi-Phase Multivariate Ratio Estimators for Partial Information Case Using Multi-Auxiliary Vatiables

  • Ahmad, Zahoor;Hanif, Muhammad;Ahmad, Munir
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.5
    • /
    • pp.625-637
    • /
    • 2010
  • In this paper we propose generalized multi-phase multivariate ratio estimators in the presence of multiauxiliary variables for estimating population mean vector of variables of interest. Some special cases have been deduced from the suggested estimator in the form of remarks. The expressions for mean square errors of proposed estimators have also been derived. The suggested estimators are theoretically compared and an empirical study has also been conducted.

Pliable regression spline estimator using auxiliary variables

  • Oh, Jae-Kwon;Jhong, Jae-Hwan
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.5
    • /
    • pp.537-551
    • /
    • 2021
  • We conducted a study on a regression spline estimator with a few pre-specified auxiliary variables. For the implementation of the proposed estimators, we adapted a coordinate descent algorithm. This was implemented by considering a structure of the sum of the residuals squared objective function determined by the B-spline and the auxiliary coefficients. We also considered an efficient stepwise knot selection algorithm based on the Bayesian information criterion. This was to adaptively select smoothly functioning estimator data. Numerical studies using both simulated and real data sets were conducted to illustrate the proposed method's performance. An R software package psav is available.

Comparison of Small Area Estimations by Sample Sizes

  • Kim, Jung-O;Shin, Key-Il
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.3
    • /
    • pp.669-683
    • /
    • 2006
  • Model-based methods are generally used for small area estimation. Recently Shin and Lee (2003) suggested a method which used spatial correlations between areas for data set including some auxiliary variables. However in case of absence of auxiliary variables, Direct estimator is used. Even though direct estimator is unbiased, the large variance of the estimator restricts the use for small area estimation. In this paper, we suggest new estimators which take into account spatial correlation when auxiliary variables are not available. We compared Direct estimator and the newly suggested estimators using MSE, MAE and MB.

A Dual Problem of Calibration of Design Weights Based on Multi-Auxiliary Variables

  • Al-Jararha, J.
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.2
    • /
    • pp.137-146
    • /
    • 2015
  • Singh (2013) considered the dual problem to the calibration of design weights to obtain a new generalized linear regression estimator (GREG) for the finite population total. In this work, we have made an attempt to suggest a way to use the dual calibration of the design weights in case of multi-auxiliary variables; in other words, we have made an attempt to give an answer to the concern in Remark 2 of Singh (2013) work. The same idea is also used to generalize the GREG estimator proposed by Deville and S$\ddot{a}$rndal (1992). It is not an easy task to find the optimum values of the parameters appear in our approach; therefore, few suggestions are mentioned to select values for such parameters based on a random sample. Based on real data set and under simple random sampling without replacement design, our approach is compared with other approaches mentioned in this paper and for different sample sizes. Simulation results show that all estimators have negligible relative bias, and the multivariate case of Singh (2013) estimator is more efficient than other estimators.

Efficient Use of Auxiliary Variables in Estimating Finite Population Variance in Two-Phase Sampling

  • Singh, Housila P.;Singh, Sarjinder;Kim, Jong-Min
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.2
    • /
    • pp.165-181
    • /
    • 2010
  • This paper presents some chain ratio-type estimators for estimating finite population variance using two auxiliary variables in two phase sampling set up. The expressions for biases and mean squared errors of the suggested c1asses of estimators are given. Asymptotic optimum estimators(AOE's) in each class are identified with their approximate mean squared error formulae. The theoretical and empirical properties of the suggested classes of estimators are investigated. In the simulation study, we took a real dataset related to pulmonary disease available on the CD with the book by Rosner, (2005).

Improved Exponential Estimator for Estimating the Population Mean in the Presence of Non-Response

  • Kumar, Sunil
    • Communications for Statistical Applications and Methods
    • /
    • v.20 no.5
    • /
    • pp.357-366
    • /
    • 2013
  • This paper defines an improvement for estimating the population mean of a study variable using auxiliary information and known values of certain population parameter(s), when there is a non-response in a study as well as on auxiliary variables. Under a simple random sampling without a replacement (SRSWOR) scheme, the mean square error (MSE) of all proposed estimators are obtained and compared with each other. Numerical illustration is also given.

Statistical micro matching using a multinomial logistic regression model for categorical data

  • Kim, Kangmin;Park, Mingue
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.5
    • /
    • pp.507-517
    • /
    • 2019
  • Statistical matching is a method of combining multiple sources of data that are extracted or surveyed from the same population. It can be used in situation when variables of interest are not jointly observed. It is a low-cost way to expect high-effects in terms of being able to create synthetic data using existing sources. In this paper, we propose the several statistical micro matching methods using a multinomial logistic regression model when all variables of interest are categorical or categorized ones, which is common in sample survey. Under conditional independence assumption (CIA), a mixed statistical matching method, which is useful when auxiliary information is not available, is proposed. We also propose a statistical matching method with auxiliary information that reduces the bias of the conventional matching methods suggested under CIA. Through a simulation study, proposed micro matching methods and conventional ones are compared. Simulation study shows that suggested matching methods outperform the existing ones especially when CIA does not hold.

Impact of Trend Estimates on Predictive Performance in Model Evaluation for Spatial Downscaling of Satellite-based Precipitation Data

  • Kim, Yeseul;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.1
    • /
    • pp.25-35
    • /
    • 2017
  • Spatial downscaling with fine resolution auxiliary variables has been widely applied to predict precipitation at fine resolution from coarse resolution satellite-based precipitation products. The spatial downscaling framework is usually based on the decomposition of precipitation values into trend and residual components. The fine resolution auxiliary variables contribute to the estimation of the trend components. The main focus of this study is on quantitative analysis of impacts of trend component estimates on predictive performance in spatial downscaling. Two regression models were considered to estimate the trend components: multiple linear regression (MLR) and geographically weighted regression (GWR). After estimating the trend components using the two models,residual components were predicted at fine resolution grids using area-to-point kriging. Finally, the sum of the trend and residual components were considered as downscaling results. From the downscaling experiments with time-series Tropical Rainfall Measuring Mission (TRMM) 3B43 precipitation data, MLR-based downscaling showed the similar or even better predictive performance, compared with GWR-based downscaling with very high explanatory power. Despite very high explanatory power of GWR, the relationships quantified from TRMM precipitation data with errors and the auxiliary variables at coarse resolution may exaggerate the errors in the trend components at fine resolution. As a result, the errors attached to the trend estimates greatly affected the predictive performance. These results indicate that any regression model with high explanatory power does not always improve predictive performance due to intrinsic errors of the input coarse resolution data. Thus, it is suggested that the explanatory power of trend estimation models alone cannot be always used for the selection of an optimal model in spatial downscaling with fine resolution auxiliary variables.

Doubly Robust Imputation Using Auxiliary Information (보조 정보에 의한 이중적 로버스트 대체법)

  • Park, Hyeon-Ah;Jeon, Jong-Woo;Na, Seong-Ryong
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.1
    • /
    • pp.47-55
    • /
    • 2011
  • Ratio and regression imputations depend on the model of a survey variable and the relation between the survey variable and auxiliary variables. If the model is not true, the unbiasedness of the estimator using the ratio or regression imputation cannot be guaranteed. In this paper, we develop the doubly robust imputation, which satisfies the approximate unbiasedness of the estimator, whether the model assumption is valid or not. The proposed imputation increases the efficiency of estimation by using the population information of the auxiliary variables. The simulation study establishes the theoretical results of this paper.

A Study on Auxiliary Variable Selection in Unit Nonresponse Calibration (단위 무응답 보정에서 보조변수의 선택에 관한 연구)

  • 손창균;홍기학;이기성
    • The Korean Journal of Applied Statistics
    • /
    • v.16 no.1
    • /
    • pp.33-44
    • /
    • 2003
  • Typically, it should be use auxiliary variable for calibrating the survey nonreponse in census or sampling survey. Where, if the dimension of auxiliary information is large, then it nay be spend a lot of computing time, and difficult to handle data set. Also because the variance estimator depends on the dimension of auxiliary variables, the variance estimator becomes underestimator. To deal with this problem, we propose the variable selection methods for calibration estimation procedure in unit nonreponse situation and we compare the efficiency by simulation study.