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A Dual Problem of Calibration of Desigh Weights Based on
Multi-Auxiliary Variables
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Abstract

Singh (2013) considered the dual problem to the calibration of design weights to obtain a new generalized
linear regression estimator (GREG) for the finite population total. In this work, we have made an attempt to
suggest a way to use the dual calibration of the design weights in case of multi-auxiliary variables; in other
words, we have made an attempt to give an answer to the concern in Remark 2 of Singh (2013) work. The same
idea is also used to generalize the GREG estimator proposed by Deville and Sérndal (1992). It is not an easy task
to find the optimum values of the parameters appear in our approach; therefore, few suggestions are mentioned
to select values for such parameters based on a random sample. Based on real data set and under simple random
sampling without replacement design, our approach is compared with other approaches mentioned in this paper
and for different sample sizes. Simulation results show that all estimators have negligible relative bias, and the
multivariate case of Singh (2013) estimator is more efficient than other estimators.
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1. Introduction

In survey sampling we are usually interested in estimating the finite population total, ratio, variance,
...,etc. The availability of auxiliary variables are usually used to increase the precision of such
estimators. Consider the finite population U of N units indexed by the set {1,2,...,N}. For the
i unit, let yi be the value of the interest variable Y, and xy;, x2;,. .., X,; be the values of the aux-
iliary variables Xi, Xo,...,X,, respectively. Based on the probability sampling design p (-), draw
a random sample s from U. The first order inclusion probability x; is defined by n; = X o; p (),
and the second inclusion probability ;; is defined by m;; = X ;p(s), for i # j, and m;; = m
when i = j. The probability sampling design p (-) is assumed to be a measurable design. Define
Ly = 2iev X1;» by = Xiev X255+ -5 1y, = Diev Xp, be the population totals for the auxiliary variables
X1, Xo,...,X,, respectively.
Horvitz and Thompson (1952) proposed the following estimator

N Yi
Lyr = Z #I{ies} = Z diyiljcs)

iU ! ieU

= Zdiyi (1.1

i€s

to estimate the population total #,, where /() is one if 7 € s and zero otherwise, and d; = 1/n; are the
sampling design weights. However, 7, does not use the availability of the auxiliary variables.
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The availability of the auxiliary variables and the calibration on the auxiliary variables can be used
to increase the precision of our estimators. Stearns and Singh (2008) summarized the developments
by several researchers on the GREG estimators and used the calibration idea to propose three new
estimators of the variance of the GREG estimators.

The methods of estimation the population ratio 6., = t,/t, are heavily discussed in the literature.
To get more advantages from the availability of the auxiliary variables, Al-Jararha and Bataineh (2015)
extended the idea of estimating 6y, to use the availability of such auxiliary variables. Their approach,
is more efficient than the regular estimators proposed in the literature.

Deville and Sérndal (1992) proposed the following estimator

fyas = Z wiyiljies) = Z Wili,s (1.2)
icU is

for estimating f,, where w; i € s are the new sampling design weights that calibrated the sampling
design weights d; defined by Equation (1.1) based on the calibration on the known population total
for the auxiliary variable X and the chi-square distance. The calibrated weights w; are obtained by
minimizing the chi-square distance

_ 1 (w; — di)2
b= 2 Z diq; a3

i€s

subject to the constraint condition

ty = Z Wix;. (1.4)

As a result of this, the calibrated weights w; are given by

Iy —lxn
w; = d,' + —d,' iXis 1.5
Zies diqixiz 1 ( )

Therefore, Equation (1.2) reduced to
fy.ds = fyﬂ +:3ds (tx - fxﬂ) (1.6)

which is a GREG type estimator. Where Bds = Yies AiqiXiyil Yics diqixl.z, f.x is the Horvitz and Thomp-
son (1952) estimator of ¢,. In most cases g; = 1 and other weights cases may be considered.

Singh (2013) adopted the dual approach of calibration to estimate the population total ¢,. The
proposed estimator for #, is given by

Pusin = Wy (1.7)
i€s
The calibrated sampling design weights w are obtained by minimizing
fx.xm = Z W;‘kxi (18)
i€s
subject to

Nwi=Yd (1.9)

i€s i€s
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and

o= %Z(W# (1.10)

The calibrated weights w? are given by

. Dies d;q,»x;)
d i (xl Yies diqi

wi=d; + Va. (1.11)
Z:esd iXi
‘/ZZES diqi x, Z,evdqq. )
Define va by
tx - txn
. (1.12)
Aexd iXi
Jzzes digs (v~ )
Based on the central limit theorem,
Vo ~N(@©, 1).
From Equation (1.7), the estimator t}m reduced to
itv.sin = fyﬂ +,8sin (tx - fxrr) (1.13)

which is a GREG type estimator. Where

5, - Ziendhar = S0 (- S0 w1

Dies digixi
Lies digi (xi - Zsis.\- &i‘i]i‘

In Remark 2, Singh (2013) wrote “It is not apparently clear: how the use of the dual to the
calibration of design weights can be developed for the case of multi-auxiliary information?” In this
paper, we will answer this question. Furthermore, the estimator proposed by Deville and Sirndal
(1992), defined by Equation (1.6), will be generalized to use multi-auxiliary variables.

2. Calibration and Multi-Auxiliary Variables

In this section, we will generalize the estimators proposed by Deville and Sérndal (1992) and Singh
(2013) to use multi-auxiliary variables. In other words, to generalize the estimators defined by Equa-
tions (1.6) and (1.13) to the case of the availability of p auxiliary variables X;, X5,...,X,.

Let ¢,, be the population total for the i auxiliary variable,i = 1,..., p. Assume thatt,,,,, ...,
are known. Based on a probability sampling design p (-), draw a random sample s from U. Define

P

ty = Tyly + Toby, + 0+ Tply,s (2.1)
tor = Tify, + Tofy, + - + Tyl (2.2)

and

EX = TI;X] + Tzfxl +eo+ Tpfxp7 (23)
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where 7y, = Y e djxij, Ty = X e wixij 0< i< 1fori=1,...,p,and 37 7, = 1.
To generalize the estimator proposed by Deville and Sédrndal (1992), minimize

1§ i =d)’
D==-) ———— 24
2 ; digi @4
subject to the calibration equation
ty = ty, (2.5)

where t, and f, are defined by Equations (2.1) and (2.3), respectively. The Lagrange function L is
defined by

L i =) <
L=— + Aty — t). 2.6
Differentiate L with respect to w; and equate to zero. As a result of this

w; —d; = /ld,‘q,‘ (T]X],‘ + Toxp + 00+ Tpxp,‘). 2.7

Multiply both sides of Equation (2.7) by 71x1; + T2xp; + -+ + T,Xp;, sum over i € s, and use the
calibration Equation (2.5), we have

Ty (ty —fy) + -+ T)p (txp - fx,,,,)

2
Dics diqi (nxu +ToXg+ 0 Tpxpi)

tx - ixzr

- 2 (2.8)
Dies diqi (T1X1i +ToXgit -t ‘r,,xp,»)

From Equation (2.7), the calibrated weights w; are

digi (T1X1i +ToXt et Tpxpi)
w; = di +

ty — tyr) . 2.9)
Dies digi (T1x1i + ToXoi + 00+ Tpxpi)z ( M)

Multiply both sides of Equation (2.9) by y; and sum over i € s, we have

Dies diqi (T1x1i + ToXi + -+ Tpxpi)yi

fyngdx = fyn + (tx - txn)

2
Dies digi (T1x1i +Tox e Tpxp,»)

= fyn +ﬁgds (tx - f}m) s (2.10)
where

Dics diqi (T1X1i + ToXgi + -0 + Tpxpi) Yi
2

IBgds =

Lies diqi (T1x1i +Toxpit et Tpxp,»)

T Dies diqix1iyi + T2 Qijes diqiXaiyi + - + Tp Dies diqiXpiYi @.11)

2
Dies diqi (Tlxli + ToXoi + - Tpxpi)
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The estimator given by Equation (2.10) is a GREG estimator and generalizes the estimator proposed

by Deville and Sérndal (1992).
To generalize the estimator proposed by Singh (2013), minimize

Tysin = Z w; [Tlx” + ToXp; + -+ + Tpxp,']
ies
subject to
2= d
i€s i€s

and

The Lagrange function L is defined by
2
) : 1 (v - )
L:tx.sin_/ll[;w,' _;dl)_/lz[E;qu —ay.
Differentiate L with respect to w}, and equate to zero, we have

W?—di

=0.
diq;

T1X1,'+TQJC2,‘+"'+TP.X,,Z‘—/11 - A
Therefore,
. 1
w; = d; + /l_ [(T])Cl,‘ + ToXxp; + -0 + Tpx,,,-) d,'q,' - d,‘q,‘/ll] .
2

Multiply Equation (2.16) by d;q;, sum over i € s, and solve for 1;, we have

1
A= o— |71 Z diqix1i + 72 Z digixzi+ -+ Tp Z diqi%pi -
Z[ES dl'Qi

i€s i€s i€s

Insert the w} into Equation (2.14), and solve for A5, we have
A= L Z L [(Tlxli +Toxi + T i)diCIi —dit]i/h]z.
2a i€s dﬂ]i e

Therefore,

/12 = i\/% Zdiqi [(Tlxli+T2X25+"'+T,,)Cpi)—ﬂl]2.

ies

2.12)

2.13)

(2.14)

(2.15)

(2.16)

2.17)

(2.18)

(2.19)

(2.20)
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Using the same choice of Singh (2013), and from Equations (2.17), (2.18), and (2.20) the calibrated
weights w? are

wll
wi =d; + —=V2a, 2.21)
Vi
where
Dies diCIiXu) Dies diqiXpi
l!/l'—T](x, ‘—di[+"'+7' xi——d[,- (222)
! Yies diqi 7 PP Dlies diqi 1
and
V2= Z yRal (2.23)
Multiply both sides of Equation (2.21) by y;, sum over i € s, we have
Ui
Fygsin = fyn + o V2a, (2.24)
where
Y = Z Y1iyi
i€s
Dlies z‘]lez) ( Dlies di‘]ixpi) ]
= Ty [ X1 — digi+ -+ 1y Xpi — —=———|diqi|yi
; [ ( Zzevdql PP Zies diCIi
_ Z [71 (X1 Dies diqmi)(y_ _ Zies diQiyi)d'q'
e b Yiediai )\ Tiecdigi )
Dlies diCIixpi) ( Dlies di%‘Yi) }
+ T Xp Y|y~ = | diqi
g ( g Yies digi Dies diqi
Dlies di%’xli) ( Dlies di%’)’i)
=7 X1 — yi— diq;
izE; ( Zies diCIi Zies diQi
Zieydiqixpi)( Z englyt)
+e+T Xpi — - Vi — : dlql' (2.25)
g ; ( r Zies diqi ZlES d qi
The best choice of V2a is
Vg = tw (2.26)
Vi
and by the central limit theorem,
V2a ~ N (0,1). (2.27)

From Equation (2.24), fy,gm reduces to

Z/‘\y.gsin = fyﬂ + % (tx - ier) P (2.28)
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which is a GREG type estimator and generalizes the estimator proposed by Singh (2013).

Remark 1. Al-Yaseen (2014) showed that the estimator given by Equation (1.13) can be obtained
theoretically and without using the approach given by Equation (1.12), which clarifies the concern
mentioned in Singh (2013), Remark 1.

Remark 2. The estimator fy.gsm which is defined by Equation (2.28) depends on 7y,...,7,. To find
the MSE for fy_gs,-n and differentiate with respect to 71, ..., 7,, equate to zero and solve for 7y,...,7,
is difficult even for p = 2.

To apply our approach to real data set, we have to assign values for 7q,...,7,. Consider the
following suggestions:

1. You can assign the weights by your own choice.
2. Give the auxiliary variables equal weights i.e. 7y =--- =7, = 1/p.

3. The weight of i auxiliary variable depends on the sample correlation between the i auxiliary
variable and the interest variable Y. At this case, define 7; by

|corr (x;,y)]

=—— 0 fori=1,...,p,
Xy leorr(xj, )l

Ti

where

> dix; X X iy
=1 4%V T d;

j=14j

n 2 n y 2
noga2 (S djxy) " ody? - (21 i)
J=1 507 Z';:]d,' =177 Zl;:ld/

is the sample correlation between X; and Y.

corr (x;, y) =

4. The weight of i auxiliary variable depends on the coefficient of variation (cv) of this auxiliary
variable.

The variable with less cv has higher weight. At this case, define 7; by

Ti:l—pCVL’.), fori=1,...,p.
S ev(x)

Further, the variable with higher cv has higher weight. At this case, define 7; by

Remark 3. Our suggestions are not the optimal choice for the parameters i.e. they are not the
solution for

6MSE f in
T([}‘%):O, for i=1,...,p.
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3. Applying Our Approach

In this section, our main goal is to apply our approach to real data set. Further, we will compare the
estimators defined by the Equations (1.6), (1.13), (2.10), and (2.28), namely

Byas = B+ Bas (t: = fur). 3.1
fy“vin = fyﬂ +,8sin ([x - f,wr) ) (32)
fv.gds = fyﬂ +Bgds (tx - Exzr) s (3.3)
and
. N 1 A
Iy gsin = lyr + 'ﬁ_; (tx - txn’) (3.4)

based on real data set.

Consider the Forced Expiratory Volume (FEV) data set which was used by Singh (2013). The real
data set FEV is an index of pulmonary function that measures the volume of air expelled after one sec-
ond of constant effort. This data is downloaded from http://www.amstat.org/publications/jse/datasets/
fev.dat.txt. The FEV data set was taken from a study conducted in East Boston, Massachusetts, 1980,
on 654 children aged from 3 to 19 years who were seen in the childhood respiratory disease (CRD).
The variable of interest is Y := Forced expiratory volume, and the auxiliary variables are X| := Chil-
dren age, from 3-19 years age, and X, := Children height in inches. For this data set, t, = 1724,
ty, = 6495, t,, = 39988, corr (X}, Y) = 0.75646, corr (X», Y) = 0.86814, and corr (X, X») = 0.79194.

Our main goal is to estimate #, = 1724 (pretend unknown), when t,, = 6495, and ¢, = 39988 are
assumed known. The estimators fy,ds and fy,m, defined by Equations (3.1), and (3.2) respectively, are
depending on one auxiliary variable; therefore, fy ds, and fy sin Will be computed based on X, and X,
separately, denoted by ty dsy, t} dsyy s ty sin, » and t} siny, respectively. However, the estimators t) ods and
t} gsin> defined by Equations (3 3) and (3. 4) respectlvely, are the generalized form of the estimators t) ds
and me, respectively. The estimators ty,g,h and t),,gb,,, depend on the p = 2 auxiliary variables X; and
X,. Based on suggestion 3 defined earlier, let

|corr (x1,y) |
|corr (x1,y) | + |corr (x2,¥) |

T = and T =1-1;.

The empirical mean (EM) of the estimator 7, ., of #, is defined by

tv* = Zm; (3.9)

where 7, ., is the estimate of 7, based on the i"

relative bias (ERB) of #, I, » 1s defined by

simulated random sample, i = 1, ..., m. The empirical

ERB (f,.) = %})_t’ x 100%. (3.6)

The empirical mean squares error (EMSE) of 7, . is defined by

1 m
EMSE (7 :EZ —z\ , (3.7)

i=1
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Table 1: Under srs: Comparisons between different estimators. 7; and 7, reported in this table are the means of
3000 random values of 7y, and 7, computed from 3000 random samples.

n Tl ™ fy.ds‘xl it\hd.)'x,, fy.xinxl f)'.,\'in,\-z fy,gds tAyrgsin
EM 1725.692 1724.958 1727.812 1721.621 1726.514 1721.596
30 0.4645 0.5355 ERB 0.0718 0.0292 0.1947 —-0.1643 0.1195 —-0.1657
RE 1.7777 2.2253 1.7496 1.0391 3.7901 1.0000
EM 1726.390 1724.545 1728.090 1722.503 1725.489 1722.892
40 0.4652 0.5348 ERB 0.1123 0.0053 0.2108 —-0.1131 0.0600 —-0.0906
RE 1.8328 2.4739 1.8332 1.0393 4.2814 1.0000
EM 1724919 1723.686 1725.882 1722.291 1724.290 1722.371
50 0.4656 0.5344 ERB 0.0269 —0.0445 0.0828 —-0.1254 —0.0095 —-0.1208
RE 1.8422 2.5459 1.8375 1.0394 4.4303 1.0000
EM 1725.182 1724.820 1726.113 1723.377 1725.453 1723.35
60 0.4653 0.5347 ERB 0.0422 0.0212 0.0962 —-0.0624 0.0579 —-0.0640
RE 1.8420 2.6589 1.8225 1.0434 4.5972 1.0000
EM 1723.64 1723.305 1724.520 1722.573 1723.643 1722.428
70 0.4651 0.5349 ERB —-0.0472 —-0.0666 0.0038 —-0.1091 —-0.0470 —-0.1175
RE 1.8402 2.4440 1.7906 1.0440 4.2090 1.0000
EM 1725.074 1725.111 1725.957 1723.969 1725.654 1723.895
80 0.4649 0.5351 ERB 0.0360 0.0381 0.0872 -0.0281 0.0696 -0.0324
RE 1.9233 2.4416 1.8606 1.0268 4.2271 1.0000

and the empirical relative mean squares error (RE) of the estimator fw is defined by

Lym ()
RE (f,.) = n 2t (e = 1) . (3.8)

L3 (B 1)

For the case, ¢; = 1, fori € s, and under simple random sampling without replacement (srs) design,
draw m = 3000 random samples of size n from the FEV data set by usrng procedure surveyselect
of SAS Institute. For each random sample, compute ty ds,, > t,, dsyy> t‘ sty » ty iy s ty ods» and 1, Iy gsin- Based
on m = 3000 random samples, compute EM, ERB, and RE for such estimators. The computations are
done by using a macro written in SAS. For n = 30, 40, 50, 60, 70, and 80. The results are summarized
in Table 1.

Divide the FEV data set into two strata according to the variable sex. From each stratum, under
srs, draw a random sample of size n;, and combine the two samples into one sample, and compute
Bydsy > Byds,, » Ty.siny, » Dy.siny, » Iy.gds» a0d 7y gin. Based on m = 3000 drawn random samples, compute EM,
ERB, and RE for each estimator. For n, = 15,20, 25, 30,35, and 40 the results are summarized in
Table 2.

4. Final Remarks

In this paper, the estimators proposed by Deville and Siarndal (1992) and Singh (2013) are generalized
to use p multi-auxiliary variables that are available in the study. The generalized estimators, 7y 44, and
fygm,, are GREG type estimators.

From Table 1 and Table 2, regardless of the sample size n, the estimators ty dsy, s t} dsiys ty Sinyy 5
ty sirny, t) eds> and tv gsin> Nave neghgrble emprrlcal relative bias (ERB). Further, the estimator t) gsin 18
more eﬁiment than the estimators t},d%, t}_dsxz, ty,smﬂ, ty.smxz, t}_gdx, since the other estimators have
empirical relative mean squares error (RE) greater than one.
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Table 2: Stratified sampling design: Under srs, draw random sample of size n;, from each stratum and combined
samples into one sample of size n. 7| and 7, reported in this table are the means of 3000 random values of 7,
and 7, computed from 3000 random samples.

np T1 ™ fy.dsAl fy.dst fy.sinx1 fy.sinx, fy,gds fy.g.vin
EM 1725.640 1723.545 1727.790 1721.359 1724.522 1721.467
15 0.4645 0.5355 ERB 0.0688 —-0.0527 0.1935 —-0.1795 0.0039 -0.1732
RE 1.7393 2.3657 1.7785 1.0507 4.0535 1.0000
EM 1725.586 1724.3 1727.142 1722.638 1725.027 1722.632
20 0.4651 0.5349 ERB 0.0656 —-0.0089 0.1559 —-0.1053 0.0332 -0.1056
RE 1.7483 2.3497 1.7454 1.0631 4.0592 1.0000
EM 1725.721 1724.079 1726.742 1722.956 1724.527 1723.042
25 0.4652 0.5348 ERB 0.0735 -0.0218 0.1327 —-0.0869 0.0042 —-0.0819
RE 1.6900 2.5176 1.6865 1.0755 4.3359 1.0000
EM 1725.368 1724.607 1726.51 1,723.346 1725.147 1723.404
30 0.4653 0.5347 ERB 0.0530 0.0089 0.1192 —-0.0643 0.0402 —-0.0609
RE 1.7995 24671 1.7629 1.0499 4.2482 1.0000
EM 1725.316 1724.231 1726.020 1723.451 1724.610 1723.59
35 0.4653 0.5347 ERB 0.0500 -0.0129 0.0908 —-0.0581 0.0091 —-0.0501
RE 1.8396 2.3301 1.7979 1.0311 4.0332 1.0000
EM 1726.023 1725.224 1726.695 1723.992 1725.834 1724.192
40 0.4651 0.5349 ERB 0.0910 0.0446 0.1300 —-0.0268 0.0800 -0.0152
RE 1.8349 2.5009 1.7839 1.0781 4.3225 1.0000
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