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Abstract
Singh (2013) considered the dual problem to the calibration of design weights to obtain a new generalized

linear regression estimator (GREG) for the finite population total. In this work, we have made an attempt to
suggest a way to use the dual calibration of the design weights in case of multi-auxiliary variables; in other
words, we have made an attempt to give an answer to the concern in Remark 2 of Singh (2013) work. The same
idea is also used to generalize the GREG estimator proposed by Deville and Särndal (1992). It is not an easy task
to find the optimum values of the parameters appear in our approach; therefore, few suggestions are mentioned
to select values for such parameters based on a random sample. Based on real data set and under simple random
sampling without replacement design, our approach is compared with other approaches mentioned in this paper
and for different sample sizes. Simulation results show that all estimators have negligible relative bias, and the
multivariate case of Singh (2013) estimator is more efficient than other estimators.

Keywords: Dual problem, GREG, multi-auxiliary variables, mean squared error, bias.

1. Introduction

In survey sampling we are usually interested in estimating the finite population total, ratio, variance,
. . . , etc. The availability of auxiliary variables are usually used to increase the precision of such
estimators. Consider the finite population U of N units indexed by the set {1, 2, . . . ,N}. For the
ith unit, let yi be the value of the interest variable Y , and x1i, x2i, . . . , xpi be the values of the aux-
iliary variables X1, X2, . . . , Xp, respectively. Based on the probability sampling design p (·), draw
a random sample s from U. The first order inclusion probability πi is defined by πi =

∑
s∋i p (s),

and the second inclusion probability πi j is defined by πi j =
∑

s∋i, j p (s), for i , j, and πi j = πi

when i = j. The probability sampling design p (·) is assumed to be a measurable design. Define
tx1 =

∑
i∈U x1i , tx2 =

∑
i∈U x2i , . . . , txp =

∑
i∈U xpi be the population totals for the auxiliary variables

X1, X2, . . . , Xp, respectively.
Horvitz and Thompson (1952) proposed the following estimator

t̂yπ =
∑
i∈U

yi

πi
I{i∈s} =

∑
i∈U

diyiI{i∈s}

=
∑
i∈s

diyi (1.1)

to estimate the population total ty, where I{i∈s} is one if i ∈ s and zero otherwise, and di = 1/πi are the
sampling design weights. However, t̂yπ does not use the availability of the auxiliary variables.
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The availability of the auxiliary variables and the calibration on the auxiliary variables can be used
to increase the precision of our estimators. Stearns and Singh (2008) summarized the developments
by several researchers on the GREG estimators and used the calibration idea to propose three new
estimators of the variance of the GREG estimators.

The methods of estimation the population ratio θxy = ty/tx are heavily discussed in the literature.
To get more advantages from the availability of the auxiliary variables, Al-Jararha and Bataineh (2015)
extended the idea of estimating θxy to use the availability of such auxiliary variables. Their approach,
is more efficient than the regular estimators proposed in the literature.

Deville and Särndal (1992) proposed the following estimator

t̂y.ds =
∑
i∈U

wiyiI{i∈s} =
∑
i∈s

wiyi, (1.2)

for estimating ty, where wi i ∈ s are the new sampling design weights that calibrated the sampling
design weights di defined by Equation (1.1) based on the calibration on the known population total
for the auxiliary variable X and the chi-square distance. The calibrated weights wi are obtained by
minimizing the chi-square distance

D =
1
2

∑
i∈s

(wi − di)2

diqi
(1.3)

subject to the constraint condition

tx =
∑
i∈s

wixi. (1.4)

As a result of this, the calibrated weights wi are given by

wi = di +
tx − t̂xπ∑
i∈s diqix2

i

diqixi, (1.5)

Therefore, Equation (1.2) reduced to

t̂y.ds = t̂yπ + β̂ds
(
tx − t̂xπ

)
(1.6)

which is a GREG type estimator. Where β̂ds =
∑

i∈s diqixiyi/
∑

i∈s diqix2
i , t̂xπ is the Horvitz and Thomp-

son (1952) estimator of tx. In most cases qi = 1 and other weights cases may be considered.
Singh (2013) adopted the dual approach of calibration to estimate the population total ty. The

proposed estimator for ty is given by

t̂y.sin =
∑
i∈s

w∗i yi (1.7)

The calibrated sampling design weights w∗i are obtained by minimizing

t̂x.sin =
∑
i∈s

w∗i xi (1.8)

subject to ∑
i∈s

w∗i =
∑
i∈s

di (1.9)
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and

α =
1
2

∑
i∈s

(
w∗i − di

)2

diqi
. (1.10)

The calibrated weights w∗i are given by

w∗i = di +
diqi

(
xi −

∑
i∈s diqi xi∑

i∈s diqi

)
√∑

i∈s diqi

(
xi −

∑
i∈s diqi xi∑

i∈s diqi

)2

√
α. (1.11)

Define
√
α by

√
α =

tx − t̂xπ√∑
i∈s diqi

(
xi −

∑
i∈s diqi xi∑

i∈s diqi

)2
. (1.12)

Based on the central limit theorem,
√
α ∼ N (0, 1) .

From Equation (1.7), the estimator t̂y.sin reduced to

t̂y.sin = t̂yπ + β̂sin
(
tx − t̂xπ

)
(1.13)

which is a GREG type estimator. Where

β̂sin =

∑
i∈s diqi

(
yi −

∑
i∈s diqiyi∑
i∈s diqi

) (
xi −

∑
i∈s diqi xi∑

i∈s diqi

)
∑

i∈s diqi

(
xi −

∑
i∈s diqi xi∑

i∈s diqi

)2 . (1.14)

In Remark 2, Singh (2013) wrote “It is not apparently clear: how the use of the dual to the
calibration of design weights can be developed for the case of multi-auxiliary information?” In this
paper, we will answer this question. Furthermore, the estimator proposed by Deville and Särndal
(1992), defined by Equation (1.6), will be generalized to use multi-auxiliary variables.

2. Calibration and Multi-Auxiliary Variables

In this section, we will generalize the estimators proposed by Deville and Särndal (1992) and Singh
(2013) to use multi-auxiliary variables. In other words, to generalize the estimators defined by Equa-
tions (1.6) and (1.13) to the case of the availability of p auxiliary variables X1, X2, . . . , Xp.

Let txi be the population total for the ith auxiliary variable, i = 1, . . . , p. Assume that tx1 , tx2 , . . . , txp

are known. Based on a probability sampling design p (·), draw a random sample s from U. Define

tx = τ1tx1 + τ2tx2 + · · · + τptxp , (2.1)

t̂xπ = τ1 t̂x1π + τ2 t̂x2π + · · · + τp t̂xpπ , (2.2)

and

t̆x = τ1 t̆x1 + τ2 t̆x2 + · · · + τp t̆xp , (2.3)
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where t̂xiπ =
∑

j∈s d jxi j, t̆xi =
∑

j∈s w jxi j, 0 ≤ τi ≤ 1 for i = 1, . . . , p, and
∑p

i=1 τi = 1.
To generalize the estimator proposed by Deville and Särndal (1992), minimize

D =
1
2

∑
i∈s

(wi − di)2

diqi
(2.4)

subject to the calibration equation

tx = t̆x, (2.5)

where tx and t̆x are defined by Equations (2.1) and (2.3), respectively. The Lagrange function L is
defined by

L =
1
2

∑
i∈s

(wi − di)2

diqi
+ λ

(
tx − t̆x

)
. (2.6)

Differentiate L with respect to wi and equate to zero. As a result of this

wi − di = λdiqi

(
τ1x1i + τ2x2i + · · · + τpxpi

)
. (2.7)

Multiply both sides of Equation (2.7) by τ1x1i + τ2x2i + · · · + τpxpi, sum over i ∈ s, and use the
calibration Equation (2.5), we have

λ =
τ1

(
tx1 − t̂x1π

)
+ · · · + τp

(
txp − t̂xpπ

)
∑

i∈s diqi

(
τ1x1i + τ2x2i + · · · + τpxpi

)2

=
tx − t̂xπ∑

i∈s diqi

(
τ1x1i + τ2x2i + · · · + τpxpi

)2 . (2.8)

From Equation (2.7), the calibrated weights wi are

wi = di +
diqi

(
τ1x1i + τ2x2i + · · · + τpxpi

)
∑

i∈s diqi

(
τ1x1i + τ2x2i + · · · + τpxpi

)2

(
tx − t̂xπ

)
. (2.9)

Multiply both sides of Equation (2.9) by yi and sum over i ∈ s, we have

t̂y.gds = t̂yπ +

∑
i∈s diqi

(
τ1x1i + τ2x2i + · · · + τpxpi

)
yi∑

i∈s diqi

(
τ1x1i + τ2x2i + · · · + τpxpi

)2

(
tx − t̂xπ

)
= t̂yπ + β̂gds

(
tx − t̂xπ

)
, (2.10)

where

β̂gds =

∑
i∈s diqi

(
τ1x1i + τ2x2i + · · · + τpxpi

)
yi∑

i∈s diqi

(
τ1x1i + τ2x2i + · · · + τpxpi

)2

=
τ1

∑
i∈s diqix1iyi + τ2

∑
i∈s diqix2iyi + · · · + τp

∑
i∈s diqixpiyi∑

i∈s diqi

(
τ1x1i + τ2x2i + · · · + τpxpi

)2 . (2.11)
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The estimator given by Equation (2.10) is a GREG estimator and generalizes the estimator proposed
by Deville and Särndal (1992).

To generalize the estimator proposed by Singh (2013), minimize

t̂x.sin =
∑
i∈s

w∗i
[
τ1x1i + τ2x2i + · · · + τpxpi

]
(2.12)

subject to ∑
i∈s

w∗i =
∑
i∈s

di (2.13)

and

α =
1
2

∑
i∈s

(
w∗i − di

)2

diqi
. (2.14)

The Lagrange function L is defined by

L = t̂x.sin − λ1

∑
i∈s

w∗i −
∑
i∈s

di

 − λ2

1
2

∑
i∈s

(
w∗i − di

)2

diqi
− α

 . (2.15)

Differentiate L with respect to w∗i , and equate to zero, we have

τ1x1i + τ2x2i + · · · + τpxpi − λ1 − λ2
w∗i − di

diqi
= 0. (2.16)

Therefore,

w∗i = di +
1
λ2

[(
τ1x1i + τ2x2i + · · · + τpxpi

)
diqi − diqiλ1

]
. (2.17)

Multiply Equation (2.16) by diqi, sum over i ∈ s, and solve for λ1, we have

λ1 =
1∑

i∈s diqi

τ1

∑
i∈s

diqix1i + τ2

∑
i∈s

diqix2i + · · · + τp

∑
i∈s

diqixpi

 . (2.18)

Insert the w∗i into Equation (2.14), and solve for λ2, we have

λ2
2 =

1
2α

∑
i∈s

1
diqi

[(
τ1x1i + τ2x2i + · · · + τpxpi

)
diqi − diqiλ1

]2
. (2.19)

Therefore,

λ2 = ±
1
√

2α

√∑
i∈s

diqi

[(
τ1x1i + τ2x2i + · · · + τpxpi

)
− λ1

]2
. (2.20)
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Using the same choice of Singh (2013), and from Equations (2.17), (2.18), and (2.20) the calibrated
weights w∗i are

w∗i = di +
ψ1i√
ψ2

√
2α, (2.21)

where

ψ1i = τ1

(
x1i −

∑
i∈s diqix1i∑

i∈s diqi

)
diqi + · · · + τp

(
xpi −

∑
i∈s diqixpi∑

i∈s diqi

)
diqi (2.22)

and

ψ2 =
∑
i∈s

1
diqi

ψ2
1i. (2.23)

Multiply both sides of Equation (2.21) by yi, sum over i ∈ s, we have

t̂y.gsin = t̂yπ +
ψ1√
ψ2

√
2α, (2.24)

where

ψ1 =
∑
i∈s

ψ1iyi

=
∑
i∈s

[
τ1

(
x1i −

∑
i∈s diqix1i∑

i∈s diqi

)
diqi + · · · + τp

(
xpi −

∑
i∈s diqixpi∑

i∈s diqi

)
diqi

]
yi

=
∑
i∈s

[
τ1

(
x1i −

∑
i∈s diqix1i∑

i∈s diqi

) (
yi −

∑
i∈s diqiyi∑
i∈s diqi

)
diqi

+ · · · + τp

(
xpi −

∑
i∈s diqixpi∑

i∈s diqi

) (
yi −

∑
i∈s diqiyi∑
i∈s diqi

)
diqi

]
= τ1

∑
i∈s

(
x1i −

∑
i∈s diqix1i∑

i∈s diqi

) (
yi −

∑
i∈s diqiyi∑
i∈s diqi

)
diqi

+ · · · + τp

∑
i∈s

(
xpi −

∑
i∈s diqixpi∑

i∈s diqi

) (
yi −

∑
i∈s diqiyi∑
i∈s diqi

)
diqi. (2.25)

The best choice of
√

2α is

√
2α =

tx − t̂xπ√
ψ2

(2.26)

and by the central limit theorem,
√

2α ∼ N (0, 1) . (2.27)

From Equation (2.24), t̂y.gsin reduces to

t̂y.gsin = t̂yπ +
ψ1

ψ2

(
tx − t̂xπ

)
, (2.28)
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which is a GREG type estimator and generalizes the estimator proposed by Singh (2013).

Remark 1. Al-Yaseen (2014) showed that the estimator given by Equation (1.13) can be obtained
theoretically and without using the approach given by Equation (1.12), which clarifies the concern
mentioned in Singh (2013), Remark 1.

Remark 2. The estimator t̂y.gsin which is defined by Equation (2.28) depends on τ1, . . . , τp. To find
the MSE for t̂y.gsin and differentiate with respect to τ1, . . . , τp, equate to zero and solve for τ1, . . . , τp

is difficult even for p = 2.

To apply our approach to real data set, we have to assign values for τ1, . . . , τp. Consider the
following suggestions:

1. You can assign the weights by your own choice.

2. Give the auxiliary variables equal weights i.e. τ1 = · · · = τp = 1/p.

3. The weight of ith auxiliary variable depends on the sample correlation between the ith auxiliary
variable and the interest variable Y . At this case, define τi by

τi =
|corr (xi, y)|∑p
j=1 |corr(x j, y)|

, for i = 1, . . . , p,

where

corr (xi, y) =

∑n
j=1 d jxi j y j −

∑n
j=1 d j xi j

∑n
j=1 d jy j∑n

j=1 d j√(∑n
j=1 d jx2

i j
−

(∑n
j=1 d j xi j

)2∑n
j=1 d j

) (∑n
j=1 d jy2

j −
(∑n

j=1 d jy j

)2∑n
j=1 d j

)
is the sample correlation between Xi and Y .

4. The weight of ith auxiliary variable depends on the coefficient of variation (cv) of this auxiliary
variable.

The variable with less cv has higher weight. At this case, define τi by

τi = 1 − cv (xi)∑p
j=1 cv(x j)

, for i = 1, . . . , p.

Further, the variable with higher cv has higher weight. At this case, define τi by

τi =
cv (xi)∑p
j=1 cv(x j)

, for i = 1, . . . , p.

Remark 3. Our suggestions are not the optimal choice for the parameters i.e. they are not the
solution for

∂MSE
(
t̂y.gsin

)
∂τi

= 0, for i = 1, . . . , p.
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3. Applying Our Approach

In this section, our main goal is to apply our approach to real data set. Further, we will compare the
estimators defined by the Equations (1.6), (1.13), (2.10), and (2.28), namely

t̂y.ds = t̂yπ + β̂ds
(
tx − t̂xπ

)
, (3.1)

t̂y.sin = t̂yπ + β̂sin
(
tx − t̂xπ

)
, (3.2)

t̂y.gds = t̂yπ + β̂gds

(
tx − t̂xπ

)
, (3.3)

and

t̂y.gsin = t̂yπ +
ψ1

ψ2

(
tx − t̂xπ

)
(3.4)

based on real data set.
Consider the Forced Expiratory Volume (FEV) data set which was used by Singh (2013). The real

data set FEV is an index of pulmonary function that measures the volume of air expelled after one sec-
ond of constant effort. This data is downloaded from http://www.amstat.org/publications/jse/datasets/
fev.dat.txt. The FEV data set was taken from a study conducted in East Boston, Massachusetts, 1980,
on 654 children aged from 3 to 19 years who were seen in the childhood respiratory disease (CRD).
The variable of interest is Y := Forced expiratory volume, and the auxiliary variables are X1 := Chil-
dren age, from 3–19 years age, and X2 := Children height in inches. For this data set, ty = 1724,
tx1 = 6495, tx2 = 39988, corr (X1,Y) = 0.75646, corr (X2,Y) = 0.86814, and corr (X1, X2) = 0.79194.

Our main goal is to estimate ty = 1724 (pretend unknown), when tx1 = 6495, and tx2 = 39988 are
assumed known. The estimators t̂y.ds and t̂y.sin, defined by Equations (3.1), and (3.2) respectively, are
depending on one auxiliary variable; therefore, t̂y.ds, and t̂y.sin will be computed based on X1, and X2
separately; denoted by t̂y.dsx1

, t̂y.dsx2
, t̂y.sinx1

, and t̂y.sinx2
respectively. However, the estimators t̂y.gds and

t̂y.gsin, defined by Equations (3.3) and (3.4) respectively, are the generalized form of the estimators t̂y.ds

and t̂y.sin, respectively. The estimators t̂y.gds and t̂y.gsin depend on the p = 2 auxiliary variables X1 and
X2. Based on suggestion 3 defined earlier, let

τ1 =
|corr (x1, y) |

|corr (x1, y) | + |corr (x2, y) | and τ2 = 1 − τ1.

The empirical mean (EM) of the estimator t̂y.∗ of ty is defined by

EM
(
t̂y.∗

)
=

1
m

m∑
i=1

t̂y.∗i , (3.5)

where t̂y.∗i is the estimate of ty based on the ith simulated random sample, i = 1, . . . ,m. The empirical
relative bias (ERB) of t̂y.∗ is defined by

ERB
(
t̂y.∗

)
=

EM
(
t̂y.∗

)
− ty

ty
× 100%. (3.6)

The empirical mean squares error (EMSE) of t̂y.∗ is defined by

EMSE
(
t̂y.∗

)
=

1
m

m∑
i=1

(
t̂y.∗ − ty

)2
, (3.7)
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Table 1: Under srs: Comparisons between different estimators. τ1 and τ2 reported in this table are the means of
3000 random values of τ1, and τ2 computed from 3000 random samples.

n τ1 τ2 t̂y.dsx1
t̂y.dsx2

t̂y.sinx1
t̂y.sinx2

t̂y.gds t̂y.gsin

EM 1725.692 1724.958 1727.812 1721.621 1726.514 1721.596
30 0.4645 0.5355 ERB 0.0718 0.0292 0.1947 −0.1643 0.1195 −0.1657

RE 1.7777 2.2253 1.7496 1.0391 3.7901 1.0000
EM 1726.390 1724.545 1728.090 1722.503 1725.489 1722.892

40 0.4652 0.5348 ERB 0.1123 0.0053 0.2108 −0.1131 0.0600 −0.0906
RE 1.8328 2.4739 1.8332 1.0393 4.2814 1.0000
EM 1724.919 1723.686 1725.882 1722.291 1724.290 1722.371

50 0.4656 0.5344 ERB 0.0269 −0.0445 0.0828 −0.1254 −0.0095 −0.1208
RE 1.8422 2.5459 1.8375 1.0394 4.4303 1.0000
EM 1725.182 1724.820 1726.113 1723.377 1725.453 1723.35

60 0.4653 0.5347 ERB 0.0422 0.0212 0.0962 −0.0624 0.0579 −0.0640
RE 1.8420 2.6589 1.8225 1.0434 4.5972 1.0000
EM 1723.64 1723.305 1724.520 1722.573 1723.643 1722.428

70 0.4651 0.5349 ERB −0.0472 −0.0666 0.0038 −0.1091 −0.0470 −0.1175
RE 1.8402 2.4440 1.7906 1.0440 4.2090 1.0000
EM 1725.074 1725.111 1725.957 1723.969 1725.654 1723.895

80 0.4649 0.5351 ERB 0.0360 0.0381 0.0872 −0.0281 0.0696 −0.0324
RE 1.9233 2.4416 1.8606 1.0268 4.2271 1.0000

and the empirical relative mean squares error (RE) of the estimator t̂y.∗ is defined by

RE
(
t̂y.∗

)
=

1
m

∑m
i=1

(
t̂y.∗ − ty

)2

1
m

∑m
i=1

(
t̂y.gsin − ty

)2 . (3.8)

For the case, qi = 1, for i ∈ s, and under simple random sampling without replacement (srs) design,
draw m = 3000 random samples of size n from the FEV data set by using procedure surveyselect
of SAS Institute. For each random sample, compute t̂y.dsx1

, t̂y.dsx2
, t̂y.sinx1

, t̂y.sinx2
, t̂y.gds, and t̂y.gsin. Based

on m = 3000 random samples, compute EM, ERB, and RE for such estimators. The computations are
done by using a macro written in SAS. For n = 30, 40, 50, 60, 70, and 80. The results are summarized
in Table 1.

Divide the FEV data set into two strata according to the variable sex. From each stratum, under
srs, draw a random sample of size nh and combine the two samples into one sample, and compute
t̂y.dsx1

, t̂y.dsx2
, t̂y.sinx1

, t̂y.sinx2
, t̂y.gds, and t̂y.gsin. Based on m = 3000 drawn random samples, compute EM,

ERB, and RE for each estimator. For nh = 15, 20, 25, 30, 35, and 40 the results are summarized in
Table 2.

4. Final Remarks

In this paper, the estimators proposed by Deville and Särndal (1992) and Singh (2013) are generalized
to use p multi-auxiliary variables that are available in the study. The generalized estimators, t̂y.gds and
t̂y.gsin, are GREG type estimators.

From Table 1 and Table 2, regardless of the sample size n, the estimators t̂y.dsx1
, t̂y.dsx2

, t̂y.sinx1
,

t̂y.sinx2
, t̂y.gds, and t̂y.gsin, have negligible empirical relative bias (ERB). Further, the estimator t̂y.gsin is

more efficient than the estimators t̂y.dsx1
, t̂y.dsx2

, t̂y.sinx1
, t̂y.sinx2

, t̂y.gds, since the other estimators have
empirical relative mean squares error (RE) greater than one.
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Table 2: Stratified sampling design: Under srs, draw random sample of size nh from each stratum and combined
samples into one sample of size n. τ1 and τ2 reported in this table are the means of 3000 random values of τ1,
and τ2 computed from 3000 random samples.

nh τ1 τ2 t̂y.dsx1
t̂y.dsx2

t̂y.sinx1
t̂y.sinx2

t̂y.gds t̂y.gsin

EM 1725.640 1723.545 1727.790 1721.359 1724.522 1721.467
15 0.4645 0.5355 ERB 0.0688 −0.0527 0.1935 −0.1795 0.0039 −0.1732

RE 1.7393 2.3657 1.7785 1.0507 4.0535 1.0000
EM 1725.586 1724.3 1727.142 1722.638 1725.027 1722.632

20 0.4651 0.5349 ERB 0.0656 −0.0089 0.1559 −0.1053 0.0332 −0.1056
RE 1.7483 2.3497 1.7454 1.0631 4.0592 1.0000
EM 1725.721 1724.079 1726.742 1722.956 1724.527 1723.042

25 0.4652 0.5348 ERB 0.0735 −0.0218 0.1327 −0.0869 0.0042 −0.0819
RE 1.6900 2.5176 1.6865 1.0755 4.3359 1.0000
EM 1725.368 1724.607 1726.51 1,723.346 1725.147 1723.404

30 0.4653 0.5347 ERB 0.0530 0.0089 0.1192 −0.0643 0.0402 −0.0609
RE 1.7995 2.4671 1.7629 1.0499 4.2482 1.0000
EM 1725.316 1724.231 1726.020 1723.451 1724.610 1723.59

35 0.4653 0.5347 ERB 0.0500 −0.0129 0.0908 −0.0581 0.0091 −0.0501
RE 1.8396 2.3301 1.7979 1.0311 4.0332 1.0000
EM 1726.023 1725.224 1726.695 1723.992 1725.834 1724.192

40 0.4651 0.5349 ERB 0.0910 0.0446 0.1300 −0.0268 0.0800 −0.0152
RE 1.8349 2.5009 1.7839 1.0781 4.3225 1.0000
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