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Abstract
Statistical matching is a method of combining multiple sources of data that are extracted or surveyed from

the same population. It can be used in situation when variables of interest are not jointly observed. It is a low-cost
way to expect high-effects in terms of being able to create synthetic data using existing sources. In this paper, we
propose the several statistical micro matching methods using a multinomial logistic regression model when all
variables of interest are categorical or categorized ones, which is common in sample survey. Under conditional
independence assumption (CIA), a mixed statistical matching method, which is useful when auxiliary informa-
tion is not available, is proposed. We also propose a statistical matching method with auxiliary information
that reduces the bias of the conventional matching methods suggested under CIA. Through a simulation study,
proposed micro matching methods and conventional ones are compared. Simulation study shows that suggested
matching methods outperform the existing ones especially when CIA does not hold.

Keywords: statistical matching, multinomial logistic regression model, conditional independence
assumption, auxiliary information

1. Introduction

As a traditional data collection method to make an inference on the finite population, surveys are
currently criticized for its cost-inefficiency caused by worsen survey environment such as increasing
not-at-home households and nonresponse rate.

Statistical matching, that is less informative but more cost-efficient data collection or augmentation
method, has been suggested as a possible solution to overcome the weakness of the conventional
survey. Statistical matching is a method of combining multiple sources of data that has two versions,
macro matching and micro matching. Macro matching is mainly used to estimate the population
parameters that are not estimable using a single source of data.

In many applications, statistical matching implies micro matching that is similar to data linkage.
For the explanation of the micro statistical matching, assume there are recipient file A and donor file
B sampled from the same population. There are no overlapping units in the file of A and B, and
the recipient file A contain variables (X,Y), and the donor file B contain (X,Z). X is a set common
variables that is contained in both data, Y is a set of unique variables that is observed only in file A,
and Z is a set of unique variables that is observed only in file B. Micro statistical matching generates
a matched file on Figure 1 by filling in appropriate values of Z to the recipient file A using the
information obtained from the file A and B. Even though various versions of micro statistical matching
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Figure 1: Basic structure of statistical matching.

are also existing, for example, matched file is constructed by combining file A and file B after filling
in Z and Y to each file, we focus on a micro matching method in which a matched file is constructed
from recipient file A. However, the results obtained in this paper are easily extended to other micro
matching methods.

Most of micro matching methods including Budd (1971) and Okner (1972) get their theoretical
validity under the conditional independence assumption (CIA) that means unique variables Y and Z
are conditionally independence conditioning on X. However, as mentioned in Sims (1972), Rodgers
(1984), Rubin (1986), and Singh et al. (1993), CIA is unrealistic and also the inferences on the
population obtained using matched files are vulnerable to serious error that causes significant bias of
an estimator. Except Renssen (1998), previous studies on the micro statistical matching considered
data in which all X, Y , and Z are continuous even though either nominal or ordinal scales are frequently
used for the surveys.

In this paper, at first, we suggest a new statistical matching method applicable to categorical
variables under CIA. The proposed method is a mixture of parametric and nonparametric method
which is robust to model misspecification. In addition, we also propose a statistical matching method
for categorical variables using the auxiliary information when the CIA is not satisfied. The auxiliary
information could be obtained from small surveys or outdated proxy data, denoted by file C, which
should contains the distribution of (X,Y,Z) or (Y,Z). The proposed method using auxiliary information
is also a mixed method using multinomial logistic regression model. Through an extensive simulation
study, we compare the performance of suggested methods to several existing micro matching methods.

The organization of paper is as follows. A brief review of statistical mathcing method using
auxiliary information is given in Section 2. In Section 3, we propose new statistical matching methods
without and with auxiliary information for categorical variables. In Section 4, we compare the several
statistical matching methods including the suggested ones in Section 3 through a simulation. We make
some concluding remarks in Section 5.

2. Statistical matching method using auxiliary information

In this section, we briefly review the important previous statistical matching methods in which auxil-
iary information is considered, based on Singh et al. (1993) and Renssen (1998). Singh et al. (1993)
proposed a modified version of Rubin (1986) and Paass (1986). Rubin (1986) proposed a mixed
matching method under parametric regression model which uses auxiliary information. A linear re-
gression model is assumed that

E(Z|X,Y) = β0 + β1X + β2Y, V(Z|X,Y) = σ2, (2.1)
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where β0, β1, and β2 are estimated from least squares equations by combining information from files
A, B, and C. If the CIA between Y and Z is satisfied, the model (2.1) reduce to the simple linear
regression of Z on X. First, for file A, predicting an intermediate value, Zint, which can be obtained
from a linear regression model (2.1) where (β0, β1, β2) are estimated using information from file A,
B, and C. Second, a value of Z in file B imputed for the file A using hotdeck method based on (X, Z).
On the other hand, Paass (1986) proposed a nonparametric matching method which uses auxiliary
information. Paass (1986)’s method basically consists of first, for the file A, a value of Z from file C is
imputed using hotdeck method based on Y or (X,Y). And then a value of Z from file B is imputed again
using hotdeck method based on (X, Z) for the file A. The basic idea of Singh et al. (1993) is to impose
categorical constraints on the matched file which is obtained from Rubin (1986) and Paass (1986).
The categorical constrained matching method is based on log linear imputation which is proposed
by Singh (1988). The purpose of this method is to preserve the categorical association among the
variables as much as possible. It start with a suitable categorizing the continuous variable (X,Y,Z)
into (X∗,Y∗,Z∗) and the distribution of cell proportions for the (X∗,Y∗,Z∗) table can be parametrized
by a log linear model

log ui jk = λ + λ
X∗
i + λ

Y∗
j + λ

Z∗
k + λ

X∗Y∗
i j + λX∗Z∗

ik + λY∗Z∗
jk + λX∗Y∗Z∗

i jk , (2.2)

where ui jk denotes the expected frequency for (i, j, k)th cell. All of the parameters in the (2.2) can
be estimated from file A, B, and C. Singh et al. (1993) defines the micro matched file such that the
estimated distribution of (X∗,Y∗,Z∗) using the matched file from Rubin (1986) or Paass (1986) satisfy
the constraint (2.2). This categorical constraints are expected to generate the reasonable estimate of
joint distributions of (X, Y,Z) in the synthetic data robust to quality of the auxiliary information file C.

Renssen (1998) considered a statistical matching method in which calibration technique is applied
for categorical variables in the finite population set-up. Renssen’s method is actually based on the
regression method suggested by Rubin (1986). They assume that there are two registrations, file A
and B, and an auxiliary information, file C, which is derived from these registrations. The problem is
imputing a value of Z from the file B into the file A using auxiliary information file C. They applied
a linear probability model used in Maddala (1983) with the assumption that the population total of X,
Y , and Z are known. Then, new predicted value for the Z:

ẑs = A
′
xs + α̂

′ (
ys − B

′
xs

)
, s = 1, 2, . . . ,N, (2.3)

where,

A
′
=
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)′ ,
xs, ys, zs are vectors of order I, J,K dummy variables, and a set of ws is a calibration weight for file C
which satisfies following set of constraints.

n∑
s=1

ws
[
ys z′s −

(
ys − B

′
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) (
zs − A

′
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)′]
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A and B in (2.3) can be calculated from the registraion file B and A respectively. α̂ can be estimated
from file A and file C. The new predicted value equals to a naive predicted value plus an adjustment
term which can be viewed as an attempt to improve the prediction for Z. This adjustment term depends
on the difference between the value of Y and its predicted value. The new predictor for the Z-value
can be used for imputation. First, the predicted value given by (2.3) is calculated for each unit in the
file A. Second, each predicted Z-value in the file A is repalced by an actual Z-value from the file B,
like the method of Singh et al. (1993).

3. Proposed statistical matching methods for categorical variables

In this section, we propose statistical matching methods for categorical variables with or without
auxiliary information by developing the methods of Singh et al. (1993) and Renssen (1998). The
proposed methods are mixture of hotdeck method in Singh et al. (1993) and parametric regression
model in Renssen (1998). Basically, we use a multinomial logistic regression model instead of linear
probability model suggested in Renssen (1998). To define a multinomial logistic regression model,
suppose that the response variable Y has J category and that the probability of belonging to each
category is (π1, π2, . . . , πJ), where

∑J
j=1 π j = 1. Under the multinomial logistic regression model, the

log of probability of the observation belonging to each category j relative to the last category J is

ln
π j

πJ
= β

′

jx, j = 1, . . . , J − 1, (3.1)

where x = (x1, x2, . . . , xp)
′

is vector of explanatory variables and β
′

j
= (β j1, β j2, . . . , β jp) is a vector of

regression coefficients corresponding to outcome j. From (3.1), we get the probability π j as

π j = πJ exp
(
β
′

jx
)
=

exp
(
β
′

j
x
)

1 +
∑J−1

i=1 exp
(
β
′

i
x
) , j = 1, . . . , J − 1, (3.2)

where

πJ =
1

1 +
∑J−1

i=1 exp
(
β
′

i
x
) .

3.1. Statistical matching without auxiliary information under CIA

D’Orazio et al. (2006) investigated several methods of statistical matching under CIA in depth. In
D’Orazio et al. (2006), parametric, nonparametric, and mixed matching methods are investigated
thoroughly when variables are continuous, and methods using loglinear model and random hotdeck
are briefly described when all variables in recipient and donor files are categorical ones. The method
using loglinear model is introduced to perform a macro matching in D’Orazio et al. (2006).

Hotdeck matching, which is a most commonly used micro matching method, is similar to impu-
tation in which both donor and recipient files are classified so that missing at random mechanism is
satisfied, one observation in the same class is randomly chosen to impute the missing value in the
recipient file. However, if the unit for the imputation does not exist in the same class of the donor file
B, the random hotdeck does not work and both donor and recipient files are manually merged with
the adjacent category, which could cause for violation of CIA.
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To overcome the weakness of existing hotdeck matching methods, we propose a mixed method
using multinomial logistic regression model, which can be used both for micro and macro approach,
when recipient and donor files are composed of categorical variables.

The first proposed mixed method using multinomial logistic regression, which is denoted by mixed
method using distance hotdeck under CIA (MHC), consists of following three steps.

(1) From the donor file B, the estimated probability π̂D
k is obtained by fitting a multinomial logistic

regression model with a set of X-independent variables and Z-dependent variable, where πk is the
probability of element being in kth category.

(2) For observation in the recipient file A, the predicted probability π̂R
k is obtained from following

equation.

π̂R
k =

exp
(
β̂
′

k
x
)

1 +
∑K−1

i=1 exp
(
β̂
′

i
x
) , k = 1, . . . ,K − 1,

where β̂
′

k
is estimated from the Step (1).

(3) Matching Step : a value of Z in the donor file B is imputed for the recipient file A using hotdeck
method based on (π̂D

k , π̂R
k ) Manhattan, Euclidean, and Gower distance, and denote it Ẑ.

The second proposed mixed method, which is donoted by mixed method using randomization mech-
anism under CIA (MRC) consists of three steps, as well.

(1) Using the donor file B, fit a multinomial logistic regression model with a set of X-independent
variables and Z-dependent variable.

(2) Same as the Step (2) of the MHC method.

(3) Predict category Z in the recipient file A by generating multinomial random variable with pre-
dicted probability π̂R

k in Step (2).

Unlike the usual hotdeck method, the proposed method uses the set of predicted probability based
on the multinomial logistic regression, no further process is necessary even when same classes in
donor file are empty. The MRC method has the advantage of not only less burden of computation but
also simplicity over the first method.

3.2. Statistical matching with auxiliary information when CIA does not hold

Both existing and proposed matching methods introduced in Section 3.1 are based on the CIA between
Y and Z given X. If the CIA is not satisfied in the population, estimated joint distribution of (Y,Z)
based on a statistically matched data has a serious bias. In this section, we propose a micro matching
method in which auxiliary information is used and thus, it is applicable even when CIA is not satisfied.
Auxiliary information can be obtained from the past data or by conducting a small survey in which
all variables (X,Y,Z) are observed. The obtained auxiliary information can improve the performance
of statistical matching when CIA does not hold.

As mentioned in Section 2, Singh et al. (1993) and Renssen (1998) considered the use of auxiliary
information as an alternative to the CIA for statistical matching. The methods of Singh et al. (1993)
apply existing matching methods with categorical constraints given after dividing the continuous vari-
ables in file A and B into categorical variables, which is not directly applicable when all the variables
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in file A and B are categorical variables. Renssen (1998)’s method uses a linear probability model
to predict an estimate of the probability of Z being in a specific category conditioning on the X in
the recipient file A, instead of the actual observed value 0 and 1. And also, linear probability models
have well known drawback that provides which is less than 0 or greater than 1 estimated probabilities
(D’Orazio, 2017).

We propose several statistical matching mixed methods for categorical variables using multino-
mial logistic regression model when auxiliary information is available. The first method, which is
denoted by mixed method with auxiliary information 1 (MA1) consists of following three steps.

(1) Using the file C, where X, Y , and Z are all observed, fit a multinomial logistic regression model
in which Y is a set of independent variables and Z is a dependent variable.

(2) For recipient file A, the predicted probability π̂R
k is obtained by using a multinomial logistic re-

gression model constructed from the file C in Step (1).

(3) Predict category Z in the recipient file A by generating multinomial random variable with pre-
dicted probability π̂R

k in Step (2).

The second method, which is denoted by MA2, also consists of three steps. MA2 is the same as
MA1 except that independent variables in Step (1) are (X,Y).

(1) Using the file C, fit a multinomial logistic regression model in which (X,Y) are independent
variables and Z is a dependent variable.

(2)–(3) Steps are the same as the (2)–(3) Steps of the MA1.

The third method, which is denoted by MA3, consists of following six steps.

(1) Using the file C, fit a multinomial logistic regression model in which Z is a set of independent
variables and Y is a dependent variable.

(2) For the donor file B, the predicted probability π̂D
j is obtained by using a multinomial logistic

regression model constructed from the file C in Step (1).

(3) Predict a category of Y in the donor file B by generating multinomial random variable with pre-
dicted probability π̂D

j in Step (2).

(4) Using the donor file B, fit a multinomial logistic regression model in which (X, Ŷ) are independent
variables and Z is a dependent variable.

(5) For the recipient file A, the predicted probability π̂R
k is obtained by using a multinomial logistic

regression model constructed from the donor file B in Step (4).

(6) Predict a category of Z in the recipient file A by generating multinomial random variable with
predicted probability π̂R

k in Step (5).

The fourth method, which is denoted by MA4, consists of six steps, as well. MA4 is the same as
MA3 except that independent variables in Step (1) are (X,Z).

(1) Using the file C, fit a multinomial logistic regression model in which (X, Z) are independent
variables and Y is a dependent variable.

(2)–(6) Steps are the same as the (2)–(6) Steps of the MA3.

The proposed methods, which are mixture of parametric and nonparametric method, could be applied
to match the files even when CIA does not hold.
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4. Simulation study

We conduct a simulation study to compare the performance of several matching methods including the
proposed ones, when all variables, in both files, consist of categorical variables. For the simulation
study, we generate a population of size 100,000 with (X,Y,Z) variables. The vector of common
variable, Xd, appeared in both donor and recipient files, is

Xd =
(
x′1d

, x′2d
, x′3d

)′
= (x11, x12, x13, x14, x21, x22, x23, x31, x32)′ ,

where

xi j =

{
1, if the observation belongs to jth categories for ith categorical variable,
0, otherwise.

That is, we considered 3 categorical variables that have 4, 3, and 2 categories, respectively. Y is
a categorical variable of 4 categories with probability, πy

j, of appearing in the category is given by
multinomial logistic regression model such that Y = (y1, y2, y3, y4) ∼ Multinomial(πy

1, π
y
2, π

y
3, π

y
4)

ln
π

y
j

π
y
4

= β
′y
j

Xd, (4.1)

where

β
′y
1
= (−0.1, 0.1,−0.1,−0.1, 0.1,−0.1, 0.1, 0.1,−0.1),

β
′y
2
= (0.1,−0.1, 0.1,−0.1, 0.1, 0.1,−0.1, 0.1,−0.1),

β
′y
3
= (0.1,−0.1, 0.1,−0.1,−0.1, 0.1,−0.1,−0.1, 0.1).

To evaluate the performance of the different matching method in various association strength of
(X,Y,Z), we considered 8 different Z-variables, that are generated from the model,

ln
πzl

k

πzl
3
= β

′ zl

k
Xd + γ

′
k
zl Yd, (4.2)

where different categories, (k = 1, 2) and different senarios (l = 1, 2, . . . , 8), and Yd is a vector of 4
dummy variables. The coefficients used to generate Z-value in (4.2) are summarized in Table 1. Note
that, Z1 to Z4 are generated so that no association exists with X but different level of association exists
with Y . Z5 to Z8 are generated so that association exists with X and different level of association exists
with Y .

In each replication, recipient sample A of size 1,000 and donor sample B of size 4,000 were se-
lected using simple random sampling. As noted, we assumed only (X,Y) are observed in the recipient
file A and (X,Z) are observed in the donor file B. To evaluate the performance of statistical matching
methods, we consider the estimation of contingency table of Y and Z using the matched data. It is
because the inference on the categorical variables usually based on the contingency table.

For MHC, we applied several distance measure such as Manhattan, Euclidean, Gower distance
function, and a constrained statistical matching method using Manhattan distance function. For details
about various distance measures, see D’Orazio et al. (2006). For the comparison, we use the total



514 Kangmin Kim, Mingue Park

Table 1: β
′

k
and γ′

k
in (4.2)

k β
′

k
γ
′

k

Z1
1 (0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0)
2 (0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0)

Z2
1 (0, 0, 0, 0, 0, 0, 0, 0, 0) (0.3, 0, 0.3, 0)
2 (0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 0.3, 0, 0.3)

Z3
1 (0, 0, 0, 0, 0, 0, 0, 0, 0) (0.7, 0, 0.7, 0)
2 (0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 0.7, 0, 0.7)

Z4
1 (0, 0, 0, 0, 0, 0, 0, 0, 0) (1, 0, 1, 0)
2 (0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 1, 0, 1)

Z5
1 (0.2, 0, 0.2, 0, 0.2, 0, 0.2, 0, 0.2) (0, 0, 0, 0)
2 (0,−0.2, 0,−0.2, 0,−0.2, 0,−0.2, 0) (0, 0, 0, 0)

Z6
1 (0.2, 0, 0.2, 0, 0.2, 0, 0.2, 0, 0.2) (0.3, 0, 0.3, 0)
2 (0,−0.2, 0,−0.2, 0,−0.2, 0,−0.2, 0) (0, 0.3, 0, 0.3)

Z7
1 (0.2, 0, 0.2, 0, 0.2, 0, 0.2, 0, 0.2) (0.7, 0, 0.7, 0)
2 (0,−0.2, 0,−0.2, 0,−0.2, 0,−0.2, 0) (0, 0.7, 0, 0.7)

Z8
1 (0.2, 0, 0.2, 0, 0.2, 0, 0.2, 0, 0.2) (1, 0, 1, 0)
2 (0,−0.2, 0,−0.2, 0,−0.2, 0,−0.2, 0) (0, 1, 0, 1)

Table 2: Comparison of TVD between random hotdeck and matching methods under CIA

Cramer’s V with Y RAND MHC(MAN) MHC(EUC) MHC(GOW) MHC(M.C) MRC
Z1 0.006 0.0415 0.0419 0.0417 0.0420 0.0406 0.0418
Z2 0.089 0.0673 0.0677 0.0679 0.0671 0.0673 0.0672
Z3 0.204 0.1343 0.1334 0.1336 0.1339 0.1333 0.1332
Z4 0.285 0.1849 0.1856 0.1850 0.1853 0.1838 0.1848
Z5 0.005 0.0412 0.0417 0.0413 0.0410 0.0406 0.0415
Z6 0.083 0.0647 0.0647 0.0645 0.0645 0.0644 0.0646
Z7 0.195 0.1290 0.1289 0.1288 0.1303 0.1287 0.1302
Z8 0.276 0.1817 0.1826 0.1829 0.1810 0.1830 0.1826

TVD = Total Variation Distance; CIA = Conditional Independence Assumption; RAND = RANDom hotdeck; MHC =
Mixed method using distance Hotdeck under CIA; MAN = MANhattan distance; EUC = EUClidean distance; GOW =
GOWer distance; M.C = Manhattan distance with Constrained matching; MRC = Mixed method using Randomization
mechanism under CIA.

variation distance (TVD), which is a dissimilarity measure among marginal or joint distribution of
categorical variables, and the formula is as shown below.

TVD =
1
2

M∑
m=1

∣∣∣ f1,m − f2,m
∣∣∣ , (4.3)

where f1,m is a relative frequencies of Y × Ẑ contingency table in the matched file, and f2,m is a
relative frequency of Y × Z contingency table in the population, and M is number of cells in the Y × Z
contingency table. Table 2 shows the Monte Carlo mean of 1,000 values of TVD.

Cramer’s V appeared in the table, is a measure of association between two nominal variables Y
and Z that is ranged [0, 1]. Table 2 shows that the performance of the random hotdeck, MHC with
several distance functions, and MRC are very similar. The higher the association between Z and Y ,
estimated joint distribution of (Y,Z) obtained from the matched files is significantly different from the
true ones as expected. That is, if CIA is not satisfied in the population, all statistical micro matching
methods are not useful in estimating the association of unique variables and thus all methods requires
some modification to handle such a problem.

In the second simulation, we compared the performance of the statistical matching methods using



Statistical micro matching using a multinomial logistic regression model for categorical data 515

Table 3: Comparison of TVD between random hotdeck and methods using auxiliary information

Cramer’s V with Y RAND MA1 MA2 MA3 MA4
Z1 0.006 0.0415 0.1196 0.1238 0.1083 0.1189
Z2 0.089 0.0673 0.1192 0.1229 0.1084 0.1195
Z3 0.204 0.1343 0.1179 0.1204 0.1053 0.1128
Z4 0.285 0.1849 0.1135 0.1146 0.1020 0.1110
Z5 0.005 0.0412 0.1182 0.1215 0.1078 0.1159
Z6 0.083 0.0647 0.1137 0.1180 0.1014 0.1133
Z7 0.195 0.1290 0.1127 0.1158 0.1028 0.1087
Z8 0.276 0.1817 0.1099 0.1126 0.1004 0.1077

TVD = Total Variation Distance; RAND = RANDom hotdeck; MA =Mixed method with Auxiliary information.

Table 4: Comparison of TVD between RAND and MA3 with various sample size of file C

Cramer’s V RAND MA3
with Y 50 100 150 200 250 300

Z1 0.006 0.0415 0.1476 0.1083 0.0903 0.0808 0.0750 0.0698
Z2 0.089 0.0673 0.1518 0.1084 0.0885 0.0806 0.0735 0.0704
Z3 0.204 0.1343 0.1432 0.1053 0.0879 0.0786 0.0723 0.0687
Z4 0.285 0.1849 0.1404 0.1020 0.0850 0.0754 0.0715 0.0664
Z5 0.005 0.0412 0.1495 0.1078 0.0884 0.0789 0.0724 0.0693
Z6 0.083 0.0647 0.1478 0.1014 0.0892 0.0801 0.0724 0.0700
Z7 0.195 0.1290 0.1405 0.1028 0.0862 0.0769 0.0704 0.0681
Z8 0.276 0.1817 0.1405 0.1004 0.0840 0.0748 0.0689 0.0657

TVD = Total Variation Distance; RAND = RANDom hotdeck; MA =Mixed method with Auxiliary information.

the auxiliary information suggested in Section 3.2 to the conventional random hotdeck method. To
obtain auxiliary information, file C of size 100 with (X,Y,Z) variables, equivalent to 10% of the
recipient file A, was sampled from the population. As in the previous simulation, the Monte Carlo
mean of 1,000 values of TVD are shown in Table 3.

Table 3 shows that in the case of Z1, Z2, Z5, Z6, which has weak or almost no association with Y ,
random hotdeck show the better performance in estimating the joint distribution of (Y,Z) than other
methods in which auxiliary information is incorporated. However, in the case of Z3, Z4, Z7, Z8, which
are moderately associated with Y , the MA1 to MA4 methods show better performance than the random
hotdeck. In particular, MA3 was found to have the best performance consistently among the methods
of MA1 through MA4. In this simulation study, the method using auxiliary information on the (Y,Z)
relationship shows the consistently better performance than using (X,Y,Z) relation information. In
addition, random hotdeck shows poor performance, as the association of Y and Z is getting stronger.
As expected, the statistical matching method which is valid under CIA is sensitive to the level of
association between Y and Z, while the methods using auxiliary information are relatively insensitive
to the CIA.

In the third simualtion, we compared the performance of matching method, RAND and MA3 with
various sample size of file C. The performance of the MA3 method was compared to the random hot-
deck, when the size of file C is 50, 100, 150, 200, 250, and 300. Table 4 shows that, the performance
of MA3 in estimating the joint distribution of (Y,Z) is improved as the size of file C increased. How-
ever, as appeared in Figure 2, the amount of gain obtained by increasing the size of file C decrease as
the size of file C increase. Note that almost no gain is obtained by increasing n = 200 to n = 250 in
the Figure 2. Based on a limited simulation study, we recommend to do an appropriate size survey to
obtain file C, if it is necessary.
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Figure 2: Comparison of TVD between RAND and MA3 with various sample size of file C. TVD = total variation
distance; RAND = Random hotdeck; MA = mixed method with auxiliary information.

5. Conclusion

The main goal of a statistical micro matching is to generate synthetic data which has (X,Y, Z) and
estimate the joint distribution of (Y,Z) and (or) (X,Y,Z). For example, if we have file A with in-

formation on the education level of persons, their gender, age and region and file B with information
on the occupation of persons, their gender, age and region, the goal of statistical matching is to gen-
erate augmented data with all information and estimate the association between education level and
occupation. In this paper, we proposed several mixed matching methods using a multinomial logistic
regression model for categorical variables. First, we proposed a statistical matching method without
auxiliary information under CIA. The performance of the random hotdeck and suggested method is
very similar and higher the association between Y and Z, estimated joint distribution of (Y, Z) obtained
from the matched file is significantly different from the true one. Although the proposed method in-
troduced in Section 3.1 do not show significantly better performance than the random hotdeck, the
proposed methods is useful when the random hotdeck is restricted. Second, we propose a statistical
matching method with auxiliary information when CIA does not hold. The higher the association be-
tween Y and Z, the statistical matching method using auxiliary information shows better performance
than random hotdeck. If moderate association between Y and Z is suspected, we recommend to apply
the method introduced in Section 3.2 which use the auxiliary information instead of ones introduced
in Section 3.1. Finally, the simulation result shows that the size of file C does not need to be large
which means the cost to overcome the CIA would not be a serious concern in practice.
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