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Abstract

This paper presents some chain ratio-type estimators for estimating finite population variance using two
auxiliary variables in two phase sampling set up. The expressions for biases and mean squared errors of the
suggested classes of estimators are given. Asymptotic optimum estimators(AOE’s) in each class are identified
with their approximate mean squared error formulae. The theoretical and empirical properties of the suggested
classes of estimators are investigated. In the simulation study, we took a real dataset related to pulmonary disease
available on the CD with the book by Rosner, (2005).
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1. Introduction

Consider a finite population U = (U, U,,...,Un). Let y and x; denote the study variable and
auxiliary variable, taking values y; and x;; respectively on U;, i = 1,2,...,N. Let (¥,03,Co) and
X, of, C,) denote the population mean, variance and coefficient of variation of y and x| respectively.
Das and Tripathi (1978) have considered the problem of estimating the population variance of y using
information on auxiliary variable x; and suggested six estimators in three different situations, where
X, or 0§ or C? is known and studied their properties. The studies relating to estimation of finite pop-
ulation variance are also made by, among others, Srivastava and Jhajj (1980), Isaki (1983) and Searls
and Intarapanich (1990).

Sometimes even if population mean X, of x; is not known, the population mean X, of another
auxiliary variable x; closely related to x; but compared to x; remotely related to y (i.e. po; > pee) is
available. Employing two phase sampling procedure and motivated by Chand (1975), several authors
including Kiregyera (1980), Mukerjee et al. (1987), Srivastava et al. (1989), Upadhyaya et al. (1990)
and Singh et al. (1994) have suggested some chain ratio-type estimators for estimating population
mean Y of y. Suppose a preliminary large sample of size n units is drawn by simple random sampling
without replacement(SRSWOR) and the auxiliary variables x; and x, are measured. In the second
phase, a sub sample of size m(< n) units is drawn using SRSWOR and the two variables y and
x; are observed. Adopting the same procedure as adopted by Chand (1975) and Srivastava (1967),
Gupta, Singh, and Mangat (Gupta et al., 1992-1993) suggested the following classes estimators in
two different situations and studied their properties up to the first order of approximation. The forms
of the estimators proposed by them are given below:
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(i) When population mean X; of the variable x, is known,

= \81 x 82
dy = s (ﬂ) (—l) : (L.1)
xl X2
(ii) When population mean squared S2 = (N — 1)"' £V, (xp; - X,)? is known,
q 2 j=1\%2j
RUN A
s s
dy = s} (—1) [i) ; (1.2)
si2) \ 82
where (g1, g2) and (I3, I) are constants and
m m n n m
y=mY y; B=m) xy, %= ny x %= 'Y Xy s5=(m- D™ ;-9
J=1 j=1 j=1 j=1 j=1

$=m-17 - 2P 5= - 7Y = B s = - DT ey - B
j=1 j=1 j=1

Assuming that population size N is large enough as compared to sample sizes m and n so that the
finite population correction terms can be ignored, to the first degree of approximation, the minimum
mean squared errors(MSEs) of d; and d, are respectively given by

min MSE(dy) = 0§ [m ™800 — A6 — 1763, (1.3)
and
6*2 6*2
min MSE(d,) = 0§ [m-lazoo - /1(6—329] -n! ( 5302 )] , (1.4)
040 004
where

a0 = (Ba00 — 1), 039 = (6220 — 1), g0 = (Boso — 1), 834 = (o0 = 1), G300 = (6202 — 1),

, 1< _ - o\
Opgr = _pﬁ%’ Hpar = Z (}’j - Y)p (xlj - X1)q (X.zj - Xz) ,
200 020 Hoo2 =1

(p. g, r) being non-negative integers and 1 = 1/m - 1/n.

Recently several researchers have paid attention to two-phase sampling, and a few of them as
listed as: Farrell and Singh (2010), Rueda ef al. (2007) and Singh er al. (2006). In particular, the
objective of this paper is to propose some improved chain ratio-type estimators for finite population
variance o% of y supposing that information on another auxiliary variable x; is available on all units
of the population, for instance, see Mukerjee et al. (1987). In Section 2, several special cases of the
class of estimators defined in Section 3 are investigated theoretically. The simulation study results are
given in Section 4.

2. The Suggested Class of Estimators

In Section 2.1, we consider a situation when the population mean X, of the second auxiliary variable
is known where as the population mean X; of the first auxiliary variable remains unknown. In Section
2.2, we consider a situation when the population variance § % of the second auxiliary variable is known,
but the population variance Sf of the first auxiliary variable remains unknown. In Section 2.3, we
consider a situation when the coefficient of variation C; of x; may be known. ‘
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2.1. When population mean X, is known

Utilising prior knowledge on population mean X; of ¥;, we define a chain ratio-type estimator for 0'%

as
2, \P [ X \P? i P3
s
1 So(i; X, % 2.1

where %, = m™! 2ty *2; and p; (i = 1,2,3) are suitably chosen constants. For a choice of constants
as: (p1 = g1, P2 = &2, p3 = 0), Z; reduces to the estimator d.
To the first degree of approximation, the bias and MSE of I, are, respectively, given by

-1 C -1
B(Z)) = o} [/lplcl (p—l-z——cl +p12Cops + 5210) + (p—;—%)(m—n—cl +piCa + 5201)

C -1
+(£i—n—2~)(p32 C, +5201)} : 2.2)

and
. |-
MSEE)) = o} [/lplcl (p1C1 + 2p3p1Cs + 26210) + p {5400 + p3Co (p3Ca + 25201))
1
;chz (p2C2 +2p3Cs + 25201)] ) 2.3)

where py; is the correlation coefficient between variables x, and x; and C; (i = 0, 1, 2) is the coefficient
of variation of y, x; and x».
The MSE(Z,) at (2.3) is minimized for:

_ P120201 ~ 6210

1= 249
Ci(1-p%)
201 — O
2= Pr2(P120201 — 6210) 2.5)
G (1 - P%z)
and
0210 — 6
s = (P126210 — d201) 2.6)
C(1- %)
On substituting (2.4)—~2.6) in (2.3, the minimum MSE of Z, is, therefore, given by
ot -
min MSE(Z1) = —28iy [1 AV . %pz], @7

where

P = 801 + 0519 ~ 2P1262106201
. %300 (1 - p%z)
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is the squared of the coefficient of multiple correlation of (y — ¥)* with (x; — X;) and (x2 — X,), and
p* = 83,/85, is the squared of the correlation coefficient between (y — Y)? and (x; — X). It can be
further easily be seen that the minimum MSE of the difference type estimator:

Ta =2+ p (B - %)+ pa (% - %)+ p3 (X2- fz) 2.8)
is the same as that of Z; given in (2.7).
From (1.3) and (2.7), we have
8201 — P120210)°
min MSE(d;) — min MSE(Z; or Zg1) = ,wg(—%—zﬁ- >0 2.9)
~ P2
unless dzg1 = p126210-

It follows that the proposed estimator X; (or X4;) is more efficient than d;.

2.2. When population mean squared S % is known

We consider the estimator for 0-3 as

2\q1 *2 \92 2\93
_e2l5) (%2 (%2
Z‘(] (s) (sz) ! @10

1

where g; (i = 1,2, 3) are constants and 52 = (m—1)"! 3, (x5, — %2)*. For g1 = h1, g2 = hp and g3 = 0,
3, reduces to ds. '
To the first degree of approximation, the bias and MSE of Z, are respectively given by

-1 * x * -1 * *
B(Ey) = 2 [,lql {(qlT) oo + @300 + 5220} + % {(‘” > )6004 + 6202}

-1 * * *
and
4 * * * 1 23 * £3
MSE(Z,) = 0 | Aqs (918540 + 29360, + 20%) + - {8300 + 43 (236304 + 26302}
l ¥ 3 .
t=q (928504 + 2436004 + 25202)] : (2.12)
The MSE(Z,) is minimized for
_ 56225;02 - 63045520 (2.13)
q = * 6*2 )
60405*004 Yo
_ 6522 6;026622 - 6;206504 (2 1 4)
P\ Groa)  GoaBgs - 02 '
004 040%004 ~ %022
and
- 6322‘5;20 - 53026840 (2.15)

* * *2
60405004 — 607



Efficient Use of Auxiliary Variables in Estimating Finite Population Variance in Two-Phase Sampling 169

Thus the minimum MSE of X, is given by

ot -
min MSE(Z;) = 263, [1 (e - 2o ] 2.16)
where
2 _ 040350 = 205200020302 + Foan¥on

Y
M 5200 (‘55405304 - 53%2)

is the squared of the coefficient of multiple correlation of (y — ¥)? with (x; — X1)* and (x; - X;)* and
P = 832, /(83000504 is the squared of the correlation coefficient between (y — ¥)* and (x; — X»)”.
It is to be noted that the difference-type estimator:

Zn=fra (57— ) v an(53- o7) + as(53 - ) @17

attains the same minimum MSE as that of Z; given in (2.16).
From (1.4) and(2.16), we have

(5040320 = F300022)
® 800 (Bpa000 — 122)

provided 634,83, # 03,00,,, Whence it follows that the proposed estimator X, (or Z) is better than
the estimatcr d;.

min MSE(d) — min MSE(Z; or Zdz) = oy >0 (2.18)

2.3. When population coefficient of variation C, is known

In many situations of practical importance information regarding population mean X, or mean squared
M % of the auxiliary variable x, may not be available, but the coefficient of variation C, of x, may be
available as it is a very stable quantity, for instance, see Searls (1964), Murthy (1967, pp. 96-99),
Gleser and Healy (1976) and Lee (1981). The survey statistician may utilize this information in
obtaining estimators for o3, better than the usual sample mean squared s3 . Thus using the knowledge
of C;, we define the following class of estimators for 0'2 as

2 ky C*Z CZ
23:s§( *‘] ( } ( ] , (2.19)
¢c2) )\

where k; (i = 1,2, 3), are constants, C? = s2/%2, (% = s2/%2, C}? = 5}%/%} and = 57172
To the first degree of approximation, it can easxly be seen that

B(s) = o%[/l {h(y,x,) + (k‘ _

! )h(xl) + kah(xy, xz)} ky
ks ((ky —
)k( 2)} + - {( ) )h()Cz) + h(y, XZ)}] (2.20)

MSE(Z;) = o [/lkl {ih(x) + 2ksh(xr, x2) + 28y, 1)} + % {8300 + k3 (ksh(x2) + 2805, x2)}

+%— {h(y, x2) + ksh(xy) + (k

and

+% {(ky + 2k3)h(x2) + 280y, Xz)}}, 221
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where
h(x)) = (4C2 — 45030C1 +80)  h(x2) = (4C3 — 46003C2 + S
h(y, x1) = [3C2 = 2C1(B0s0 + 6210) + B3], h¥, x2) = [3C3 — 32003 + S201) + 3]
h(x1,x2) = [4P12C1C2 = 26012C1 — 20021C ~ 2 + 53201 ,
805 x1) = (8320 — 26210C1), 80 x2) = (6302 — 20mC).

The MSE(Z3) is minimized for
ky = h(x1, x2)g(y, xz) h(x2)g(y, xl), 2.22)
h(x)h(x2) — {h(x1, x2))?
_ G, x2) h(x1, x2)g(y, x2) — h(x2)g(y, xl)] 2.23)
h(xy) - B(xi)h(xs) = {h(x1, x2)P )
ks = h(x1, x2)8(y, x1) = h(x1)g(y, xz). 2.24)

h(x1)h(x2) — (h(x1, X2)}?
On substituting (2.4)~(2.6) in (2.3, the minimum MSE of ¥; is, therefore, given by

ot
min MSE(Z3) = ~25, [1 (B )wn - 2o (2.25)
where
w2 _ RGP0, 1) = 2h(x1, %2)8(y, x1)8(y, X2) + h(%2)g* (¥, 1) 2.26)
0.12 = n 3 )
ro0 (R(xDR(x2) — B2 (x1, X2)}
and

4D - gz(y’ x2)6*
h(xp)

2.4. Results in trivariate normal population

Let (3, x1, x2) have a trivariate normal distribution with mean (¥, X;, X,) and covariance matrix X in
which the variances are denoted by o3, o2 and o and correlation coefficients by po1, po2 and pi2.
Also we have 83, = 2, 8,0 = 203, 050, = 205, Oy = 203, and 8012 = 6201 = 6210 = O Thus the
expressions in (1.3), (1.4), (2.3), (2.12), (2.16) and (2.25), respectively, reduces to

20.4
min MSE(d;) = —° = v(s) 2.27)
20.4
min MSE(d) = —° [1 2o - %p?n] 2.28)
, 207
min MSE(Z,) = V (s} )-;n— (2.29)
_ 204 ot —2p2 p 02 + Pt m :
min MSE(S) = —2 |1 - ( 0~ oz 02) - -—pgz] (230)
" 1-pip n
min MSEC) < 1™ o (1 +2C3)p, — 2012 (12 + 2C1C) P2y %, + (1 +2C3) 230
n1+2C2 (1+2¢2)(1+2€2) - p}, o1z + 2C1 )
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From the above expressions, we make the following observations:

I. It is clear from (2.27) and (2.29) that in trivariate normal populations, the use of auxiliary in-
formation in the form of sample means (%1, X}, X, X;) and known population mean does not
contribute towards the reduction in variance of usual estimator s0 In practice, therefore, one
should not pick up the estimators from the classes dy and X;. The estimators so, dy and %,
are equally efficient. This result is same as reported by Singh ez al. (1999) while constructing
calibrated estimators of variance in survey sampling.

II. Expression (2.30) clearly demonstrates that there is considerable reduction in the variance of
the usual estimator s% by using Z,. Thus merely the additional knowledge of the coefficients of
correlation p;; (i # j = 0, 1, 2) would enable us to use the suggested class of estimators 2;. The
proposed estimator X, is more efficient than s§~and d, in case of trivariate normal population too.

HI. The reduction in variance of s3 is seen by using the estimator Z3 which requires the additional
knowledge on well known parameters C;, C; and p;; (i # j = 0, 1,2) of the auxiliary characters
X1 and X2.

Thus it is worth noting that one should pick up estimators X, and X3 in case of trivariate normal
population.

3. A General Class of Estimators

When both population mean X, and population mean squared S3 of auxiliary variate x; are known,
we first suggest a class of estimators for estimating the population variance o7 as:

2\B ;e T $2\?
s=4(3) (3 G ()
3 S()(xl S;Z % ( )

which may be further generalized as:
S%ﬂw'rszzfpjbysgw
== (3.2)
52 X,/ \82

T4 = (2
¢ so(x1)(

(a,B, 7, ¢, 7, ¥) are suitably chosen constants. For ¥y = i = 0 in (3.2), Z4 reduces to d3.
Keeping the form of dy one can define a class of estimators for 0"(2) a

2 2 w2 2
T = h(sh, %1, 5, 53, 512, 55, 57) (3.3)
where h(e) is a function of (s2, u) with u = (¥, %}, 5%, 5}, %;, s3) such that

1) (so, i) assume the value in a closed convex subspace, @, of the six dimensional space containing
the point

(03, 1. %1,53,5%, %,,83) = (02, %1,52, %, 83) = (03, P).

(ii) The function h(s}, u) is continuous and bounded in Q.
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(iii) h(a'(z,, P) =1, where h(o%, P) denotes the first order partial derivative with respect to
s(2) -at (s(z), g) = (0'2, f)
(iv) The first and second order partial derivatives of h‘(s(z), u ) exist and are continuous and bounded
in Q. ‘

It is to noted that the estimator X, includes the estimators d; and d5, but it fails to include the estimators
%, i=1,2,3,4. We, therefore, define a more general class of estimators of o% as

%, =g(s5 1) (3.4)
where v .= (%1, %}, 53, 5}%, %5, 532, %3, 53) and g(s2, ¥) is function of (s3, ) such that glo2, P) =03
satisfying the following conditions:

(i) Whatever be the sample chosen, let (sg', 'v) assume values in a closed convex sub-space, S, of
the eight dimensional real space containing the point (0'(2), P).

(ii) The function g(s%, V) is contitiuous and bounded in S.
(iii) The first and second order partial derivatives of g(s%, v) exists and are also continuous in S.

(iv) g(o3, P) = 1, where (03, P) denote, the first order partial derivative with respect to 53 ‘at
(s%, v)= (0'(2), P). It may be noted here that for constructing X in (4.3) and X, ‘in (4.4) we
adopt the approach by Srivastava (1980). ‘

First, we shall derive the expressions for bias and MSE of %, and then of X,. Expanding h(sg, u)
about the point (0'(2), P) in a second order Taylor’s series and taking expectations it is found that the
bias of X, is of order n™!. Denoting the first order partial derivatives of h(sg, u ) with respect to (s3, #)
at the point (a‘%, P) by (ho, by, b2, h3, ha, hs, he) respectively and noting that by = ~hy, hz = —hy, We
see that the MSE of Z;; to the first degree of approximation is given by

MSE(Z;) = {%pim‘+‘(h")r % (1) +2 QT‘,@*} 3.5)
which is minimized for
B=-3'b, (36)
where
A0, fl,ugéo, 0, 0
g_l . /IH(())?O, '1#(()):40’ 1/7310025’ l/nF/)toos ’ (Q*)T = (1, ha, hs, he),

0, 0, 1/npoos, 1/nugy,
T * 1 1 * * . x
b" =20, /1#220,';#201, ;ﬂzoz s Haog = M220 — H200M020,  Hagp = H202 — H200/4002,

* 2 * * 2
Hoao = H040 ~ Hop»  Hoos = Hoo4 — .11(2)02.’ Haoo = H400 — Haop
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and X is assumed to be positive definite.
Substituting for #* from (3.6) in (3.5), the minimum value of MSE of £, is given by

~ o~

1
min MSE(Z;) = ;;1200 - b'zp. 3.7

Since Z is positive definite, the term b7 Z7'b is non-negative. To obtain the bias and MSE of the
general class X, in (3.4), we denote the first order partial derivatives of g(sg, v ) with respect to

(s, ) at the point (03, P) by (g0, 81,82, 83, 84. 85 86,87, 88), (8 = (81,83, 85,86, 87:88), b"" =
(Ai210, A, L npiaor, Vg, 1/ mpnor, 1/mps,)

Az, Aoso, 0, 0, Apov,  Aporz
1”030 1 /l.ua409 09 09 /LUOZI * /1#522

and Z* = 0, 0, Hom/n, 4 803/ n Hon/n, f 904/ " | assumed to be positive definite.
~ 0) 09 ”003/”’ #004/“9 }1003/719 I‘l()()4/n

Ao, Aoz, poo2/n, poos/n,  pooz/m.  poos/m
Aoz, Aty poos/n,  pooa/n,  Hoos/m, W, /m
Expanding g(sg, v ) about the point (a'g, P) in a second order Taylor’s series and taking expecta-
tions , it is found that the bias of £, is of order n!.

Noting that g; = ~g», g3 = ~ga4, go(a'g, P) =1, we find the MSE of Z, to the first degree of
approximation, as

MSE(S) = 29 1 (g4) £+(g") + 257" 3.8)
m
which is minimized for
g =-3b". 3.9

Thus the minimum MSE of Z, is given by

Hago _ perga-tpe (3.10)
el A

min MSE(Z,) =

As I* is positive definite, the term b*TZ*~!b* is non-negative.
We have from (3.7) and (3.10) that

min MSE(Z) — min MSE(Z,) = (b 216" - 'Z7'8)>0. - @.11)

It follows that X, is more efficient than 2. Thus the estimators Zg and X, are better than X;3.
In case of trivariate normal populations the minimu MSE’s of Z; and Z, are same as that of d; and
%, respectively given in (2.22) and (2.24).

Remark 1. If n = N and x; is considered to be a non zero constant, the estimator Z,, and Z, reduce
to the class of estimators:

2 = ¥y 2 o2
ZS = t(sO,X]_,Xl,Sl,Sl)

reported by Srivastava and Jhajj (1980).
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Table 1: Format for FEV.DAT

Column Variable Format or code
1-5 ID Number
6-8 Age (years)
10-15 FEV (liters) XXXX
17-20 Height (inches) XX.X
22 Gender 0 = female/ 1 = male
24 Smoking Status 0 = noncurrent smoker/1 = current smoker

Table 2: Descriptive parameters of the three variables

Variable N Mean SE Mean Min Q1 Q2 Q3 Max
Age 654 9.931 0.116 3.000 8.000 10.000 12.000 19.000
FEV 654 2.637 0.034 0.791 1977 2.547 3.121 5.793

Height 654 61.144 0.223 46.000 57.000 61.000 65.000 74.000

Figure 1: 3D scatter plot of the real population used in the study

Remark 2. If x; is to be considered to be non-zero constant, the-estimator X, and X, reduce to the
estimator

%) = (sf, 5. 5], o}, 572)
of which the estimator £}* = s2h*(%;/%}, s3/5}%) suggested by Singh (1990) is a particular case.

Remark 3. As it is assumed that x;-values are known for all the units in the population, the esti-
mators dy, dz, Xy, Xz, X3, Z4 and the classes of estimators X, and X, require the same data, namely, the
y-values over a sample, say s,, of size m and the x;-values over a sample, say s, of size n, therefore all
these estimators are equally costly. Hence variance/MSE will be the only criterion for a meaningful
comparison so that X, will be best of these estimators.

4. Empirical Example

In the simulation study, we took a real dataset related tb pulmonary disease available on the CD
with the book by Rosner (2005). In this dataset, FEV(forced expiratory volume) is an index of pul-
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Table 3: RE(%) comparison of various estimators for different values on n and m

Ratio (m/n) = 30% 40% 50% 60% 70% 80% 90%
n m 3 5 6 7 9 10 11
s% 100.00 100.00 100.00 100.00 100.00 100.00 100.00
dy 103.52 103.54 103.55 103.56 103.58 103.55 103.60
13 d> 127.26 132.44 135.19 138.06 144.18 147.45 150.86
Z 103.90 103.84 103.82 103.79 103.73 103.71 103.68
by) 152.33 153.46 154.04 154.63 155.79 156.39 156.99
23 136.33 135.82 135.56 135.30 134.79 134.54 134.28
n m 7 10 13 15 18 20 23
?(z) 100.00 100.00 100.00 100.00 100.00 100.00 100.0
d 103.52 103.54 103.55 103.57 103.58 103.59 103.61
26 d 128.52 132.44 136.61 139.54 144.18 147.45 152.63
2 103.89 103.85 103.80 103.78 103.74 103.71 103.67
% 152.62 153.46 154.34 154.92 155.79 156.39 157.29
23 136.20 135.82 13543 135.17 13479 134.54 134.16
n m 11 15 19 23 27 31 35
sg 100.00 100.00 100.00 100.00 100.00 100.00 100.00
d; 103.53 103.54 103.55 103.57 103.58 103.59 103.61
39 d> 128.94 132.44 136.14 140.04 144.18 148.57 153.23
2 103.88 103.85 103.81 103.77 103.73 103.69 103.66
p) 152.71 153.47 154.24 155.02 155.79 156.59 157.39
33 136.16 135.82 135.47 135.13 134.79 134.45 134.12
n m 15 20 26 31 36 41 46
?0 100.00 100.00 100.00 100.00 100.00 100.00 100.00
dy 103.53 103.54 103.56 103.57 103.58 103.59 103.61
5 d> 129.16 132.44 136.61 140.29 144.18 148.28 152.63
Py 103.88 103.85 103.81 103.77 103.74 103.70 103.67
] 152.75 153.47 154.33 155.06 155.79 156.54 157.29
23 136.14 135.82 135.43 135.11 134.79 134.47 134.16
n m 19 26 32 39 45 52 58
sg 100.00 100.00 100.00 100.00 100.00 100.00 100.00
d; 103.53 103.54 103.56 103.57 103.58 103.59 103.61
65 dy 129.28 132.98 136.33 140.44 144.18 148.79 152.99
P 103.88 103.84 103.81 103.77 103.74 103.69 103.66
pY) 152.78 153.58 154.28 155.09 155.79 156.63 157.35
pr 136.12 135.76 135.46 135.09 134.79 134.44 134.13

monary function that measures the volume of air expelled after 1 second of constant effort. Data Set
FEV.DAT(on the CD-ROM given at the back of the book) contains determinations of FEV in 1980 on
654 children ages 3—19 who were in the Childhood Respiratory Disease Study(CRD Study) in East
Boston, Massachusetts. These data are part of a longitudinal study to follow the change in pulmonary
function over time in children. The format and variables in the file FEV.DAT are listed in Table 1.

In this population there are only three quantitative variables: FEV, Age and Height. The descrip-
tive parameters of these three variables in the population are given in Table 2.

We consider the problem of estimation of variance of the study variable y = FEV and two aux-
iliary variables x; = Age and x, = Height. The population correlation coefficient between the three
variables are noted as: pyy, = por = 0.756, pyx, = poz = 0.868 and p,,r, = p12 = 0.792. A three
dimensional pictorial representation of the population is shown in Figure 1.

The FORTRAN code used in evaluating the proposed new methodology are given in the Appendix
which in fact are used to study the relative efficiency of the five estimators dy, dz, Z;, X and Z3 over
the usual estimator s%. Letey = sg, e =dy, e; = dy, e3 = X1, e4 = X, and es = X3 The percent relative
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efficiency(RE) of the j™ estimator e ; with respect the estimator e is given by the formula:

- MSE(eo)

100%. 4.1
MSEG;) " @D

We consider the values of the sampling fraction f = n/N in the range 0.02 to 0.1 with a step of
0.02, which means we select first phase samples of sizes 2% , 4%, 6%, 8% and 10% of the population
size. From the given fist-phase sample of n units, we select second phase sample 30% to 90% with
a step of 10%. The relative efficiency values obtained from such a simulation study are presented in
Table 3.

Discussion of results: It is interesting to note that if the percentage (m/n) * 100% remains con-
stant irrespective of the increase in sizes of the first phase and the second phase samples, the relative
efficiency of the proposed estimators with respect to the usual estimator remains almost same. These
findings are similar to those as reported in Singh et al. (2009) in case of non-response while estimating
the ratio of two population means. The relative efficiency(RE) of the estimators d; and Z; remains ap-
proximately 103% over the estimator sg, and in this situation both the estimators d; and Z; are found
to be almost equally efficient. The relative efficiency of the estimator d, increases from approximately
126% to 152% as the size of the second phase sample increases from 30% to 90% of the size of first
phase sample. In the same way the relative efficiency of the estimator Z, increases from 152% to
157% and in contrast that of the estimator X5 decreases increase from 136% to 134% in all cases as
the second phase sample size increases from 30% to 90% of the size of the first phase sample. Thus,
we conclude that in case of the populations similar to the considered in the present investigation, the
use of the estimator X, is expected to perform better than the rest of the other estimators.
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Appendix:

'FORTRAN CODE USED IN EVALUATING THE METHODOLOGY
USE NUMERICAL _LIBRARIES
IMPLICIT NONE
INTEGER ID(1000), I, M, NS,NP
REAL AGE(1000),FEV(1000),HEIGHT(1000),SEX(1000),SK(1000)
REAL Y(1000),X(1000),Z(1000)
REAL ANP,SUMX,SUMY,SUMZ,XM,YM,ZM
REAL
MU011,MU200,MU020,MU002,MU202,MU210,MU201,MU220,MUO012,
1 MU021,MU022,MU030, MU003, MU400,MU040,MU004
REAL D202,D210,D201,D220,D0012,D021,D022,D030, D003, D400,D040,
1D004 ’
REAL D2025,D2108,D201S,D220S,D022S, D400S,D040S,D004S
REAL ANS, AM, LAMBDA, VARS2,MSED1, MSED2
REAL RHO2, RHO12, G0122, MSESIGM1
REAL RHO2S, G0122S, MSESIGM2, MSESIGM3
REAL C1,C2,HX1,HX2,HYX1,HYX2 HX1X2,GYX1,GYX2,G012SS,RHO2SS
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REAL RES02,RED1,RED2,RESIGM1,RESIGM2,;RESIGM3,SS,RR
CHARACTER*20 OUT_FILE
CHARACTER*20 IN_FILE
WRITE(*,(A)’) "NAME OF THE OUTPUT FILE’
READ(*,(A20)’) OUT_FILE
OPEN(42, FILE=OUT _FILE, STATUS="UNKNOWN’)
WRITE(*,(A)’) "NAME OF THE INPUT FILE’
READ(*,(A20)") IN_FILE
WRITE(42,(A)’) IN_FILE
OPEN(41, FILE=IN_FILE, STATUS="OLD")
READ(41,*)NP
DO2311=1,NP
231 READ(@41,9ID(),AGE®),FEV(I), HEIGHT(I),SEX(D),SK(D)
DO 2451= 1, NP
Y(1) = FEV(D)
X() = AGE()
245  Z(I) = HEIGHT(I)
ANP = NP
SUMX = 0.0
SUMY = 0.0
SUMZ = 0.0
DO 10 I=1, NP
SUMX = SUMX + X(I)
SUMY = SUMY + Y(I)
10  SUMZ = SUMZ + Z(I)
YM = SUMY/ANP
XM = SUMX/ANP
ZM = SUMZ/ANP
MUO11 = 0.0
MU200 = 0.0
MU020 = 0.0
MU002 = 0.0
MUO12 = 0.0
MUO021 = 0.0
MU202 = 0.0
MU210 = 0.0
MU201 = 0.0
MU220 = 0.0
MU022 = 0.0
MU030 = 0.0
MU003 = 0.0
MU400 = 0.0
MU040 = 0.0
MU004 = 0.0
DO 111=1, NP
MUO11 = MUO11 + (X(I)-XM)*(Z(I)-ZM)
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MU200 = MU200 + (Y(I)-YM)**2
MUO020 = MUO020 + (X(I)-XM)**2
MUO002 = MUO002 + (Z(I)-ZM)**2
MUO12 = MUO12 + (X(I)-XM)*(Z(I)-ZM)**2
MU202 = MU202 + (Y(I)-YM)*¥2%(Z(I)-ZM)**2
MU210 = MU210 + (Y(D-YM)**2%(X(I)-XM)
MUO021 = MUO021 + (X(D)-XM)**2*(Z(I)-ZM)
MU201 = MU201 + (Y(I)-YM)**2*(Z(1)-ZM)
MU220 = MU220 + (Y(I)-YM)**2*(X(I)-XM)**2
MU022 = MU022 + (X(I)-XM)**2*(Z(D)-ZM)**2
MUO030 = MUO30 + (X(I)-XM)**3
MUO003 = MUOO03 + (Z(I)-ZM)**3
MU400 = MU400 + (Y(I)-YM)**4.
MU040 = MUO40 + (X(D)-XM)**4
11 MUO004 = MUO04 + (Z(I)-ZM)**4
MUO11 = MUO11/ANP
MU200 = MU200/ANP
MU020 = MUO20/ANP
MUO002 = MUOO2/ANP
MUO012 = MUO12/ANP
MU202 = MU202/ANP
MU210 = MU210/ANP
MU201 = MU201/ANP
MU220 = MU220/ANP
MUO021 = MUO21/ANP
MUO022 = MUO22/ANP
MU030 = MUO30/ANP
MUO003 = MUOO3/ANP
MU400 = MU400/ANP
MUO040 = MUO40/ANP
MU004 = MUOO4/ANP
D202 = MU202/(MU200*MU002)
D210 = MU210/(MU200*SQRT(MU020))
D201 = MU201/(MU200*SQRT(MU002))
D220 = MU220/(MU200*MU020)
D012 = MUO12/(SQRT(MU020)*MU002)
D022 = MU022/(MU020*MU002)
D021 = MU021/(MU020*SQRT(MU002))
D030 = MU030/(MU020%*(3/2))
D003 = MUOO3/(MU002**(3/2))
D400 = MU400/MU200%*2
D040 = MUOG40/MU020%*2
D004 = MUOO4/MUQ02**2
D202S = D202-1
D210S = D210-1
D201S = D201-1
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D220S = D220-1
D022S = D022-1 D400S = D400-1
D040S = D040-1
D004S = D004-1
DO 21 8§ =0.02, 0.10, 0.02
NS =88 *NP
DO22RR =03,0.9,0.]
WRITE(42, 111)SS, RR
111 FORMAT(Q2X, ’Sampling Fraction=",F9.5,/2X,’ Response Rate="F9.5)
M = RR*NS
WRITE(42,108)NPNS.M
108 FORMAT(2X, NP="16,1XNS="151XM="14/)
AM=M
ANS =NS
LAMBDA=(1/AM-1/ANS)
VARS2 = D400S/AM
MSED1 = D400S/AM-LAMBDA*D210*%2-D201**2/ANS
MSED2 = D400S/AM-LAMBDA*(D220S**2/D040S)-
(D202S**2/D004S)/ANS
RHO2 = D201*%2/D400S
RHO12 = MUO1 1/SQRT(MU020*MU002)
G0122=(D201**2+D210%#2-2*RHO12*D210*D201)/(D400S* (1~
RHO12*#*2))
MSESIGM1 = D400S*(1-(ANS-AM)*G0122/ANS-AM*RHO2/ANS)/AM
RHO28=D2028**2/(D400S*D004S)
G01228 = (D004S*D220S**2-
2*¥D220S*D022S*D202S+D040S*D202S)/
1 (D400S*(D040S*D004S-D022S**2))
MSESIGM2 = D400S*(1-(ANS-AM)*G0122S/ANS-AM*RHO2S/ANS)/AM
C1 = SQRT(MUO020)/XM
C2 = SQRT(MU002)/ZM
HX1 = 4*C1**2-4*D030*C1+D040S
HX2 = 4*C2**2-4*D003*C2+D004S
HYX1 = 3*C1**2-2*C1*(D030+D210)+D220S
HYX2=3*C2**2-3*C2*%(D003+D201)+D202S
HX1X2=4*RHO12*C1*C2-2*D012*C1-2*D021+D022S
GYX1 = D2208-2*D210*C1
GYX2 = D2028-2*D201*C2
G0128S =(HX1*GYX2##2-2*HX1X2*GYX1*GYX2+HX2*GYX1**2)/
1 (D400S*(HX1*HX2-HX1X2**2)) ‘
RHO2SS = GYX2**2/(HX2*D400S)
MSESIGM3 = D400S*(1-(ANS-AM)*GO12SS/ANS-
AM*RHO2SS/ANS)/AM
RES02 = VARS2*100/VARS2
RED1 = VARS2*100/MSED1
RED2 = VARS2*100/MSED2
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RESIGM1 = VARS2*100/MSESIGM1
RESIGM2 = VARS2*100/MSESIGM2
RESIGM3 = VARS2#*100/MSESIGM3
WRITE(42,110)NS,M,RES02,RED1,RED2,RESIGM1,RESIGM2, RESIGM3
110 FORMAT(2X, n=",14,1X,’m=",14,1X,’RES02=",F9.3,1X,RED1=",F9.3,/
1 1XRED2=’,F9.3,1X,RESIGM1=",F9.3,1X,’RESIGM2="F9.3,/
1X,RESIGM3=",F9.3)

22 CONTINUE

21 CONTINUE
STOP
END
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