• Title/Summary/Keyword: Autoregressive-Moving-Average (ARMA) Models

Search Result 27, Processing Time 0.03 seconds

Negative binomial loglinear mixed models with general random effects covariance matrix

  • Sung, Youkyung;Lee, Keunbaik
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.1
    • /
    • pp.61-70
    • /
    • 2018
  • Modeling of the random effects covariance matrix in generalized linear mixed models (GLMMs) is an issue in analysis of longitudinal categorical data because the covariance matrix can be high-dimensional and its estimate must satisfy positive-definiteness. To satisfy these constraints, we consider the autoregressive and moving average Cholesky decomposition (ARMACD) to model the covariance matrix. The ARMACD creates a more flexible decomposition of the covariance matrix that provides generalized autoregressive parameters, generalized moving average parameters, and innovation variances. In this paper, we analyze longitudinal count data with overdispersion using GLMMs. We propose negative binomial loglinear mixed models to analyze longitudinal count data and we also present modeling of the random effects covariance matrix using the ARMACD. Epilepsy data are analyzed using our proposed model.

Time Series Analysis of Wind Pressures Acting on a Structure (구조물에 작용하는 풍압력의 시계열 분석)

  • 정승환
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.4
    • /
    • pp.405-415
    • /
    • 2000
  • Time series of wind-induced pressure on a structure are modeled using autoregressive moving average (ARMA) model. In an AR process, the current value of the time series is expressed in terms of a finite, linear combination of the previous values and a white noise. In a MA process, the value of the time series is linearly dependent on a finite number of the previous white noises. The ARMA process is a combination of the AR and MA processes. In this paper, the ARMA models with several different combinations of the AR and MA orders are fitted to the wind-induced pressure time series, and the procedure to select the most appropriate ARMA model to represent the data is described. The maximum likelihood method is used to estimate the model parameters, and the AICC model selection criterion is employed in the optimization of the model order, which is assumed to be a measure of the temporal complexity of the pressure time series. The goodness of fit of the model is examined using the LBP test. It is shown that AR processes adequately fit wind pressure time series.

  • PDF

Using Different Method for petroleum Consumption Forecasting, Case Study: Tehran

  • Varahrami, Vida
    • East Asian Journal of Business Economics (EAJBE)
    • /
    • v.1 no.1
    • /
    • pp.17-21
    • /
    • 2013
  • Purpose: Forecasting of petroleum consumption is useful in planning and management of petroleum production and control of air pollution. Research Design, Data and Methodology: ARMA models, sometimes called Box-Jenkins models after the iterative Box-Jenkins methodology usually used to estimate them, are typically applied to auto correlated time series data. Results: Petroleum consumption modeling plays a role key in big urban air pollution planning and management. In this study three models as, MLFF, MLFF with GARCH (1,1) and ARMA(1,1), have been investigated to model the petroleum consumption forecasts. Certain standard statistical parameters were used to evaluate the performance of the models developed in this study. Based upon the results obtained in this study and the consequent comparative analysis, it has been found that the MLFF with GARCH (1,1) have better forecasting results.. Conclusions: Survey of data reveals that deposit of government policies in recent yeas, petroleum consumption rises in Tehran and unfortunately more petroleum use causes to air pollution and bad environmental problems.

SHORT-TERM WIND SPEED FORECAST BASED ON ARMA MODEL IN JEJU ISLAND (제주도에서의 ARMA 모델을 기반으로한 단기 풍속 예측)

  • Do, Duy Phuong N.;Lim, Jintaek;Lee, Yeonchan;Oh, Ungjin;Choi, Jaeseok
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.329-330
    • /
    • 2015
  • From the results of previous my paper [10] in 2015 year of economic and electrical power storage research conference in Naju, this paper describes an application of autoregressive and moving average (ARMA) model to forecast hourly average wind speed (HAWS) in Jeju island. The models are used to build up short-term forecast of hourly average wind speed by the weighted sum of previous wind speed values.

  • PDF

Recent Review of Nonlinear Conditional Mean and Variance Modeling in Time Series

  • Hwang, S.Y.;Lee, J.A.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.4
    • /
    • pp.783-791
    • /
    • 2004
  • In this paper we review recent developments in nonlinear time series modeling on both conditional mean and conditional variance. Traditional linear model in conditional mean is referred to as ARMA(autoregressive moving average) process investigated by Box and Jenkins(1976). Nonlinear mean models such as threshold, exponential and random coefficient models are reviewed and their characteristics are explained. In terms of conditional variances, ARCH(autoregressive conditional heteroscedasticity) class is considered as typical linear models. As nonlinear variants of ARCH, diverse nonlinear models appearing in recent literature including threshold ARCH, beta-ARCH and Box-Cox ARCH models are remarked. Also, a class of unified nonlinear models are considered and parameter estimation for that class is briefly discussed.

  • PDF

Study on Nonlinearites of Short Term, Beat-to-beat Variability in Cardiovascular Signals (심혈관 신호에 있어서 단기간 beat-to-beat 변이의 비선형 역할에 관한 연구)

  • Han-Go Choi
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.151-158
    • /
    • 2003
  • Numerous studies of short-term, beat-to-beat variability in cardiovascular signals have used linear analysis techniques. However, no study has been done about the appropriateness of linear techniques or the comparison between linearities and nonlinearities in short-term, beat-to-beat variability. This paper aims to verify the appropriateness of linear techniques by investigating nonlinearities in short-term, beat-to-beat variability. We compared linear autoregressive moving average(ARMA) with nonlinear neural network(NN) models for predicting current instantaneous heart rate(HR) and mean arterial blood pressure(BP) from past HRs and BPs. To evaluate these models. we used HR and BP time series from the MIMIC database. Experimental results indicate that NN-based nonlinearities do not play a significant role and suggest that 10 technique provides adequate characterization of the system dynamics responsible for generating short-term, beat-to-beat variability.

Real-Time Flood Forecasting System For the Keum River Estuary Dam(II) -System Application- (금강하구둑 홍수예경보시스템 개발(II) -시스템의 적용-)

  • 정하우;이남호;김현영;김성준
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.3
    • /
    • pp.60-66
    • /
    • 1994
  • This paper is to validate the proposed models for the real-time forecasting for the Keum river estuary dam such as tidal-level forecasting model, one-dimensional unsteady flood routing model, and Kalman filter models. The tidal-level forecasting model was based on semi-range and phase lag of four tidal constituents. The dynamic wave routing model was based on an implicit finite difference solution of the complete one-dimensional St. Venant equations of unsteady flow. The Kalman filter model was composed of a processing equation and adaptive filtering algorithm. The processng equations are second ordpr autoregressive model and autoregressive moving average model. Simulated results of the models were compared with field data and were reviewed.

  • PDF

스토케스틱 방법에 의한 공작기계의 안정성 해석

  • Kim, Gwang-Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.1 no.1
    • /
    • pp.34-49
    • /
    • 1984
  • The stability of machine tool systems is analyzed by considering the machining process as a stochastic process without decomposing into machine tool structural dynamics and cutting processes. In doing so the time series analysis technique developed by Wu and Pandit is applied systematically to the relative vibration between cutting tool and work- piece measured under actual working conditions. Various characteristic properties derived from the fitted ARMA(Autoregressive Moving Average) Models and those from raw data directly are investigated in relation with the system stability. Both damping ratio and absolute value of the characteristic roots of the AR part of the most significant dynamic mode are preferred as stability indicating factors to the other pro-perties such as theoretical variance .gamma. (o) or absolute power of the most dominant dynamic mode. Maximum aplitude during a certain interval and variance estimated from raw data are shown to be very sensi- tive to the type of the signal and the location of measurement point although they can be obtained rather easily. The relative vibration signal is also analyzed by FFT(Fast Fourier Transform) Analyzer for the purpose of comparison with the spectrums derived from the fitted ARMA models.

  • PDF

Assessment of Wind Power Prediction Using Hybrid Method and Comparison with Different Models

  • Eissa, Mohammed;Yu, Jilai;Wang, Songyan;Liu, Peng
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1089-1098
    • /
    • 2018
  • This study aims at developing and applying a hybrid model to the wind power prediction (WPP). The hybrid model for a very-short-term WPP (VSTWPP) is achieved through analytical data, multiple linear regressions and least square methods (MLR&LS). The data used in our hybrid model are based on the historical records of wind power from an offshore region. In this model, the WPP is achieved in four steps: 1) transforming historical data into ratios; 2) predicting the wind power using the ratios; 3) predicting rectification ratios by the total wind power; 4) predicting the wind power using the proposed rectification method. The proposed method includes one-step and multi-step predictions. The WPP is tested by applying different models, such as the autoregressive moving average (ARMA), support vector machine (SVM), and artificial neural network (ANN). The results of all these models confirmed the validity of the proposed hybrid model in terms of error as well as its effectiveness. Furthermore, forecasting errors are compared to depict a highly variable WPP, and the correlations between the actual and predicted wind powers are shown. Simulations are carried out to definitely prove the feasibility and excellent performance of the proposed method for the VSTWPP versus that of the SVM, ANN and ARMA models.

A Study on the Predictive Power Improvement of Time Series Model with Empirical Mode Decomposition Method (경험적 모드분해법을 이용한 시계열 모형의 예측력 개선에 관한 연구)

  • Kim, Taereem;Shin, Hongjoon;Nam, Woosung;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.12
    • /
    • pp.981-993
    • /
    • 2015
  • The analysis of hydrologic time series data is crucial for the effective management of water resources. Therefore, it has been widely used for the long-term forecasting of hydrologic variables. In tradition, time series analysis has been used to predict a time series without considering exogenous variables. However, many studies using decomposition have been widely carried out with the assumption that one data series could be mixed with several frequent factors. In this study, the empirical mode decomposition method was performed for decomposing a hydrologic time series data into several components, and each component was applied to the time series models, autoregressive moving average (ARMA). After constructing the time series models, the forecasting values are added to compare the results with traditional time series model. Finally, the forecasted estimates from ARMA model with empirical mode decomposition method showed better performance than sole traditional ARMA model indicated from comparing the root mean square errors of the two methods.