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Time Series Analysis of Wind Pressures
Acting on a Structure
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Abstract

Time series of wind-induced pressure on a structure are modeled using autoregressive moving average (ARMA)
model. In an AR process, the current value of the time series is expressed in terms of a finite, linear combination of
the previous values and a white noise. In a MA process, the value of the time series is linearly dependent on a
finite number of the previous white noises. The ARMA process is a combination of the AR and MA processes. In
this paper, the ARMA models with several different combinations of the AR and MA orders are fitted to the
wind-induced pressure time series, and the procedure to select the most appropriate ARMA model to represent the
data is described. The maximum likelihood method is used to estimate the model parameters, and the AICC model
selection criterion is employed in the optimization of the model order, which is assumed to be a measure of the
temporal complexity of the pressure time series. The goodness of fit of the model is examined using the LBP test.
It is shown that AR processes adequately fit wind pressure time series.

Keywords  wind pressure, autoregressive moving average modeling, AICC criterion, LBP test, wind funnel data

1. Introduction Wind pressure time series acquired in wind
tunnel are sampled uniformly and they can be

Simulation of wind-induced pressure on struc- analyzed in time domain using parametric mode-
tures is important in the field of wind engineering. ling techniques including autoregressive moving
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average (ARMA) process, Brockwell and Davis".
The ARMA model is one of the discrete models
and is represented as stochastic linear difference
equations of finite order.

The ARMA model has been applied to various
fields of study including the field of wind engi-
neering. In wind engineering, there have been
endeavors to identify wind velocity or pressure
signals using the ARMA model. Reed and Scan-
lan” used ARMA models to describe the full-
scale data of wind velocity and wind pressure
signals collected on cooling towers. Tannuzzi and
Spinelli® used normally distributed random num-
bers in AR filters for the simulation of wind
speed. Simple time series models were developed
for the description of pressure coefficients mea-
sured on monoslope roofs by Stathopoulos and
Mohammadian®. They showed that a simple AR
model was adequate for the simulation of pressure
coefficients. Maeda and Makino” satisfactorily
simulated the gust components of the Karman's
turbulence using the ARMA model. AR models
were also used to investigate wind speed data
collected in the field (Smith and Mehta®).
Schrader” computed the statistical scatter of
integral scales of the longitudinal component
of wind velocity in a turbulent boundary layer
through simulation using the AR model. Niemann
and Hoffer” represented the buffeting aerodynamic
loads, which are non-linearly related to flow
turbulence, using the AR model. Jeong and
Bienkiewicz” applied the AR process to model
time series of pressure on a low-rise building.
ARMA models have been also employed in other
engineering applications: earthquake engineering,
Olafsson and Sigbjdrnssonw), ocean engineering,
Spanosm, and others.

Most of the above papers related to wind
engineering dealt with the full-scale or experi-
mental data of wind velocity and pressure for
ARMA modeling. Relatively low-order AR models
were fitted for the data, and the residuals of
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the fitted model were used to check the ade-
quacy of the model. In this paper, the ARMA
model is used to investigate the temporal com-
plexity of the wind-induced pressure on a model
of the Texas Tech University test building, and
attention is restricted to second order properties,
such as mean and autocorrelation function, of
time series. ARMA models with several different
combinations of the AR and MA orders are
fitted to the wind pressure, and the procedure
to select the most appropriate ARMA model to
represent the data is described. The order of
the fitted ARMA model is assumed to be a
measure of complexity of the wind-induced pres-
sure. In this paper, important model selection
criteria, such as the AICC, BIC and FPE, are
employed in the optimization of the model order.
The AICC includes a penalty factor for inclusion
of additional parameters in the model. Also,
the Ljung-Box Portmanteau (LBP) test, which
pools the sample autocorrelations of the residuals,
is employed to check the adequacy of the model.

2. Background

A time series C, having zero mean is an
autoregressive process of orderp, denoted as
AR(p), if it is stationary and satisfies the
difference equation

Ct:¢1Ct71+¢2ct72+"'+¢ﬁct*b+et (1)

where o1, -, 0, are the autoregressive co-
efficients and & is a white noise process with
zero mean and variance o.2. In an AR model,
the current value of the time series is expressed
in terms of a finite, linear combination of the
previous values of the time series and a white
noise &;.

In a moving average model, the value of the
time series is linearly dependent on a finite
number g of the previous white noise ¢&’s. The
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moving average process of order ¢, denoted as
MA(g). can be expressed as

Ci=g+ 011t be, pt+0e,, (2)

where 6, --- 4, are the moving average coefficients.

The autoregressive moving average process,
which is a combination of the autoregressive
and moving average processes, of orders p and
q, denoted as ARMA(p,q), can be expressed as

C,= ¢1Ct«1+ ¢zct—2+"'+ ¢pct—p
+€l+ (9181_1+62€t72+“'+(9q6;_q (3)

The model parameters are related to the
autocorrelation function (ACF) and the partial
autocorrelation function (PACF). The ACF is a
measure of the serial dependence of a time
series. The PACF is a measure of the dependence
between residuals of the two observations, which
result from removal of the effects of intervening
observations. The PACF is the pth autoregressive
coefficient in the AR process of order p. The
plots of the ACF and PACF suggest an approxi-

mate ARMA model for the data. If the values
of the PACF of the data C, are negligible for

lags greater than p, then an autoregressive
model of order p, AR(p), is suggested. Also, if
the values of the ACF of C, vanish for lags
greater than ¢, then a moving average model
of order q, MA(g), is suggested.

Estimation of the model parameters is made
after a model has been identified. Initial pre-
diction of the parameters, typically made for
AR models using the Yule-Walker equations,
can be subsequently refined using the least
squares and maximum likelihood methods,
Brockwell and Davis®.

Avoiding the problem of overfitting in ARMA
modeling is needed. One way in which this can
be done is to minimize the final prediction error

(FPE), Brockwell and Davis". The FPE for pure
autoregressive models is expressed as

FPE= 5.’ Z—fg (4)

where 362 is the maximum likelihood estimator
of the white noise variance o.2 of the AR(p)
model and n is the number of observations.

As a more general criterion, the Akaike in-
formation criterion (AIC) of Akaike, or its bias
corrected version (AICC), Brockwell and Davis",
is used. The AICC is expressed as

o~~~ 2 e~~~ 2
, O )

AICC(¢, 6, 0. y=—2InL(g, @
+2(p+ g+ Dn/(n—p—q—2) (5)

where L($, 8, 5.”) is the likelihood of the data,
under the Gaussian ARMA model with parameters
($,8, 5.°). In Eq.(5), the second term is a
penalty factor for inclusion of additional pa-
rameters in the model. In model selection, the
ARMA models of orders p and ¢ minimizing
AICC are selected.

The Bayesian information criterion (BIC) is
another criterion which attempts to correct
the overfitting nature of the AIC. The BIC, as
defined by Akaike'”, is written as

BIC= (n—p—q@ In[n az/(n*ﬁfq)]+n(1+ InV27)
+ptnl(E 2P -n 0 /+a]  (6)

The three criteria -~ AICC, BIC and FPE - are
used to optimize the order of ARMA models in
the paper. It is known that order selection by
minimization of the FPE, AIC or AICC is
asymptotically efficient for autoregressive models.

The fitted ARMA models are validated through
examination of the residuals which are the re-
scaled one-step prediction errors. The residuals
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are defined as
2t= (Ct_ éz)/\l Yi—1 (7)

where C; is the ARMA(p,q) based predicted
values of C, based on the observations up to
time t-1, »,., is defined by E(C,— C,)¥ 6.2,
where E is the expectation operator, and o.°
is the white noise variance of the fitted model.
If the fitted ARMA model is appropriate, then
the residuals e, should be approximately like a
white noise process with mean zero and vari-
ance o.’. This property is verified by inspecting
the ACF of the residuals.

The Ljung-Box Portmanteau (LBP) test is
also used to examine the goodness of fit of the
model in this paper. The LBP test pools the
sample autocorrelations of the residuals instead
of looking at them individually. The LBP test

statistic @,, defined by Ljung and Box'", is

Q= n(n+D B 22 WIn—b (8)

where p,(£) is the sample autocorrelation of
the residuals at lag &, and A is a maximum
number of lags. h=20 is a commonly used
value. If the model is fitted correctly, then @,
is approximately chi-squared (x*) with Ap-g
degrees of freedom. The adequacy of the model
is rejected at level @y if @, is larger than
the (1-@mr) quantile of the x5, , distribution.

3. Results and discussion

The ARMA modeling of wind~induced pressure
was performed for laboratory time series of
pressure, on the roof of a 1:50 geometrical
scale model of the Texas Tech University test
building. The experimental data was acquired
during a wind-tunnel study performed in a
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Fig. 1 Model of a structure and representative
pressure tap locations

boundary-layer wind tunnel at the Fluid Dy-
namics and Diffusion Laboratory, Colorado
State University.

ARMA models with several different combi-
nations of the orders p and g were fitted to
the pressure, and then the most appropriate
ARMA model for each data was selected. The
point pressure at tap 1 and at tap 2 on the
roof of the building model were utilized for the
analysis, given as Fig. 1. Two wind directions,
cornering wind (e =45°) and wind normal to
the longer edge of the building (2 =90°), are
employed. The time series of the considered
pressure are depicted in Fig. 2. The sampling
frequency of the pressure records was 500Hz.
The length of a continuous record of the pressure
data was 9000 points. The first 4000 points
were used in the ARMA modeling. Fig. 3 depicts
the probability density functions (PDFs) of the
four pressure time series shown in Fig. 2. The
PDF is plotted versus the fluctuating pressure
divided by the square root of the mean square
value of pressure. It is shown in Fig. 3 that
the PDFs do not deviate significantly from
Gaussian. In this paper, non-Gaussian pressure
characteristics is not considered, and attention
is restricted to second order properties of time
series.

Model matching was accomplished by using
the time series computing package ITSM (In-
teractive Time Series Modeling) developed by

14)
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function (ACF) and the partial autocorrelation
function (PACF) were computed first. They are
shown for the pressure at two representative
taps and two wind directions (@ =45° and «

Fig. 2 Time series of

Normalized Pressure

(c) tap 2, a=45°

Fig. 3 Probability density functions of pressure

o

SEATAESE]

=28 H13M A4=(2000.12)

40 -
|
50 -
6.0
7.0
0.0 30 6.0 9.0 120 15.0 180
Time (sec)
(b) tap 1, a=90°
05
0.0
0.5
10
15 I
2.0
25
30 -
-35
40
00 30 6.0 9.0 120 150 180
Time (sec)
(d) tap 2. @ =90°
pressure
206
205 F © tap1(90deg.) &
A g4 | —Geussian Qe
203t
Foz2t
©
'-g 01 ¥ o
£ 0 ®
-10 -5 0 5
Normalized Pressure
(b) tap 1, @=90°
£ 06
205 L ° tap 2 (90 deg.) °
8 0.4 L — Gaussian o
03
;; 0.2
8o
& 0 008
-7 -4 -1 2 5
Normalized Pressure
(d) tap 2, @ =90

=90° in Fig. 4. The horizontal lines on the
graph display approximate 95% bounds for the
autocorrelations of a white noise sequence. Ex-
amination of the PACF suggests an approximate
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Fig. 4 ACF and PACF of pressure

order of the AR model for the pressure.

The model parameters were established using
the maximum likelihood method. The AICC and
BIC criteria were employed in the optimization
of the model order. The FPE criterion was also
used in the optimization of the AR model order.
Several ARMA models fitted to the pressure
are presented in Tables 1 and 2. The values of
mode] selection criteria, AICC and BIC are shown
in these tables.

The value of the statistic @, used in the Liung-
Box portmanteau (LBP) test is 83 for the AR(7)
model fitted to the pressure at tap 1 and the
wind direction of 45°, Table 1. Since this value
is larger than x5g(27—7)=31.4 at level apmy
=0.05 with 20 degrees of freedom, the residuals
do not pass the test. For the residuals from the
AR(9) model fitted to the pressure at tap 2
and the wind direction of 90°, Table 2, the value
of &, is 22.6, which is less than xfg5(20)=231.4.
Thus this model is a good fit to the data.

410 s=FARAEBEE =27 HM13H HM45(2000.12)

The order of the minimum-AICC AR model
for the residuals is shown in Tables 1 and 2.
If the fitted model is satisfactory, the residuals
of the model should have the order of zero.
The AR order of the residuals of the AR(7)
model fitted to the pressure at tap 1 and the
wind direction of 45° is not zero as shown in
Table 1. This suggests that some correlation
remains in the residuals, and that the residuals
come from some other identifiable process.

The model which did not satisfy the LBP test
was excluded from model selection. Also, the
model was not selected if the residuals of the
model came from a clearly identifiable process.
All the MA models in Tables 1 and 2 have
high AICC values and do not satisfy the LBP
test. Also, the residuals of the MA models show
non-whiteness. Thus the MA models were re-
jected in model selection. Most of the ARMA
models with non-zero orders p and ¢ in these
tables fail to satisfy the LBP test or the mini-
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Table 1 ARMA model results for pressure, 8-second record subsets, a =45°

diection | ™ Miodel alce mo e | restuas
AR(T) -4864.1 -4821.9 83.0 23
AR(10} -4872.6 -4814.2 66.2 23
AR(14) -4877.6 -4799.0 67.2 23
AR(18) -4892.5 -4794.8 64.4
AR(22) -4909.2 - -4793.3 48.6
AR(24) -4915.6 -4790.8 40.8
AR(26) -4914.1 -4780.6 40.5
! MA(5) -4125.2 -4095.4 1464.0 25
MA(15) -4796.3 -4713.3 195.6 23
MA(20) -4862.5 -4755.8 104.0 26
ARMA(2,2) -4731.2 -4706.6 229.1 23
45 ARMA(6,6) -4872.9 -4804.4 71.0 23
ARMA(12.12) -4991.1 -4884.5 64.2 12
ARMA(15,9) -4967.6 -4873.1 78.3 16
AR(D) 2476.2 2538.4 34.7
AR(1D) 2466.1 2541.0 23.0
MA(3) 4439.7 4458.9 7884.0 12
MA(6) 3227.8 3269.2 2733.0 16
MA(9) 2952.7 3013.9 1265.0 18
2 ARMA(2,2) 2504.2 2532.2 55.9 12
ARMA(3.3) 2481.8 2524.0 45.5 13
ARMA(6,6) 2477.5 2568.6 33.2
ARMA(7 .4) 24747 2549.6 32.0
ARMA(8.3) 2478.7 2553.5 34.5

mum-AICC AR models fitted to their reésiduals
do not have the order of zero. Tables 1 and 2
show that the AR model having a minimum
BIC value, such as AR(7) for the pressure at
tap 1 and @ =45°, is unsatisfactory because
the residuals of the model neither pass the
LBP test nor show whiteness.

The ARMA model having a minimum AICC
value, satisfying the LBP test, and satisfying
the hypothesis that the residuals are observations
from a white noise sequence was selected as
the most appropriate model for the pressure. It
is shown in Tables 1 and 2 that the minimum-
AICC AR models fitted to the pressure satisfy
the LBP test, and that their residuals are

compatible with a realization of a white noise
sequence. Thus it is concluded that the mini-
mum-AICC AR model is quite adequate for
modeling the pressure data. For the pressure
at tap 1 and the wind direction of 45°, the
ARMA model of AR order (p=12) and MA order
(¢g=12) has a minimum AICC value, as shown
in Table 1. However, this model does not pass
the LBP test and the AR order of the residuals
of the model is not zero. For that reason, the
minimum-AICC AR model of order 24 was
selected as the best-fitting model for the pres—
sure. The value of @, for this model is 40.8 and
this does not exceed xj4(20)=31.4 significantly.
Thus this mode] is considered to be a good fit.

SRFMARR TS| =2F H13H M45(2000.12) 411
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Table 2 ARMA model results for pressure, 8-second record subsets, «=90°

AR(9) 1581.2 1635.6 21.4 0
MA(2) 3370.0 3381.2 6531.0 13
MA(4) 2335.1 . 2359.6 2311.0 13
MA(6) 2062.0 2098.5 1270.0 13
| ARMA(1,1) 2240.9 2253.0 532.8 18
ARMA(2.2) 1646.5 1671.5 92.1 13
ARMA(3.3) 1615.1 1652.3 68.0 11
ARMA(5,2) 1593.2 1636.2 375 0
ARMA(6.1) 1625.0 1668.1 63.2 13
) " ARMA(8.1) 1592.8 1647.2 33.1
%0 AR(7) -125.7 -85.5 29.1
AR(9) -128.0 775 22.6
MA(2) 1242.1 1252.7 3888.0
MA(4) 413.6 436.6 1355.0 11
) MA(6) 215.1 249.4 725.3 i1
ARMA(2,2) -44.0 -20.7 1115 11
ARMA(3,3) -108.1 -713.4 44.6
ARMA(5,2) -114.5 744 39.4 B
ARMA(5.5) -123.3 -67.9 33.2 0
ARMA(6.1) -100.4 -60.3 53.3 16

For the pressure at tap 2 and the wind direction
of 45°, the minimum-AICC AR model of order
11 was selected. The minimum-AICC AR model
of order 9 for the pressure at tap 1 and the
wind direction of 90° was selected as the best-
fitting model, shown as Table 2. Also, for the
pressure at tap 2 and the wind direction of
90°, the minimum-AICC AR model of order 9
was selected.

The AICC and BIC criteria for the pressure
at two representative taps and two wind di-
rections (@ =45 and @ =90°) are shown as a
function of the AR model order in Fig. 5. The
AR order associated with the minimum of a
given criterion for the pressure at two taps
and two wind directions is shown for AICC,
BIC and FPE in Table 3, columns 2 through
4. Tt is found from this table that the order
resulting from minimizing the AICC is similar

412 s=ERApEEsts| =28 133 H45(2000.12)

to that from the FPE, that the BIC leads to a
relatively low order of the model, and that the
AR order based on the BIC is equal to that
implied by the PACF. The AR model order
which was finally selected was based on the
AICC criterion. It is shown in column 5 of
Table 3. The model order for the pressure ranges
from 9 through 24.

The results of the LBP test, column 6 of
Table 3, indicate a good fit of the AR models.
This conclusion is confirmed by the inspection
of the residuals and by the comparison of both
the ACF and PACF of the model and sample,
respectively. The ACF of the residuals for the
pressure at a representative location (tap 2)
and two wind directions are depicted in Fig. 6.
The ACF of the residuals appears to be com-
patible with the hypothesis that the residuals
constitute a white noise sequence.



-4530 T
1950 |
-4630 |
&) & 1850
@ @
8 -4730 | 8 1750 I
< <
-4830 1650
-4930 1550
0 2 4 6 81012141618 20 22 24 26 28 0 2 4 6 8 10 12 14 - 16
AR Order AR Qrder
(a) tap 1. a =45 (b) tap 1, @=90"
2850
250 | ~o— AICC
—— BIC
2750
o © 150 r tap 2
o e
3 2650 | S s0 |
< < i
2550 | -50 SRS
2450 -180
0 2 4 6 8 10 12 14 18 6 2 4 6 8 10 12 14 16
AR Order AR Order
(c) tap 2, a=45° (@) tap 2. @=90°
Fig. 5 AICC and BIC criteria for pressure
Table 3 Order of AR models for pressure, 8-second record subsets
AR order (p) Selected model
Wind
direction Tap PACF AICC BIC FPE AR order Ljung-Box portmanteau
(1) (2) (3) 4) (5) test(df=20) (6)
a5 1 7 24 7 22 24 40.8
2 9 11 9 11 11 23.0
. 1 9 9 9 9 21.4
90
2 7 7 7 9 22.6
1 1
08 | @p2 08 1 up?
©» 0.6 o 0.6
S 04 s 0.4 f
= 02| 2 02rF
Dq:) () (900000000008 ,000¢,%,4000880%0000,0,%%,¢ 00 & O |e0000ee0ere®e®e®0® 0,0000,%00% 0000000
. 0.2 . 0.2
> -04 ¢ 204
S ~0.6 | g 06
T 08 | = 08 |
_1 _1
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Time Lag Time Lag
(a) a=45" (b) a=90°
Fig. 6 ACF of AR model residuals for pressure
HERFAMTESE S =22 H133 M45(2000.12) 413



TaE Agote FEY AAE B4

1
(o]
w08 OGO o Sample W o o0 Sample
< Y00, + Model 2 08 fF + Model
2 0671 99090004 2 s 06 [ %%
3 TP 99000000, tap s P00, tap 2
S 04 099900000060 = g4l %“’%oo
2 02| T T 9900,
= = | 0004
o oI P 0.2 00000 200q,, 0000550
g 02} g o0y ‘
v w
-0.4 -0.2
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Time Lag Time Lag
(a) a=45" (b) a=90°
Fig. 7 Sample ACF and model ACF of pressure
1 15 1
. h o Sample [T o Sample
<2 0.8 r: S Lo.
& : + Model g 08 + Model
— 06 [: = 06 L
g i tap 2 2 - ' tap 2
S 0.4 ¢ ] :
= : = 04 .
z 0.2 [ © .
o 9 L
: 0t ¥ 5 (;'-Oo0°Oo°°o°°°0°oooooooooo.°oo% z 0.2
2 02 |4 c 0 20000%00606062006P%520 06900
< < PR
0.4 ? 02 e
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Time Lag Time Lag
(a) a=45° (b) @ =90°

Fig. 8 Sample PACF and model PACF of pressure

The sample and model autocorrelation func-
tions for the pressure at a representative location
(tap 2) and two wind directions are compared
in Fig. 7. The sample and model partial auto-
correlation functions for the pressure are also
compared in Fig. 8. These comparisons show a
good agreement between the sample and model
autocorrelation functions. The similarities between
the sample and model autocorrelation functions
indicate that the model provides a good repre-
sentation of the data.

4. Conclusions

Autoregressive moving average (ARMA) models
with several different combinations of the AR
and MA orders were fitted to fluctuations of
the wind pressure on a structure, and then the
most appropriate ARMA model for each data

A4 s=MMTAZEE| =28 W13 H45(2000.12)

I

was selected. In the presented study, the three
model selection criteria - AICC, BIC and FPE
- were employed in optimization of the order
of ARMA models. The adequacy of the ARMA
model was examined using the Ljung-Box port-
manteau test as well as the residuals of the
fitted model.

The presented study showed that from a
second-order point of view AR processes ade-
quately fitted the investigated time series of
wind pressure. It was concluded that the AR
order associated with the minimum of the AICC
was optimal, and that the minimum-AICC AR
model was adequate for modeling wind pressure.
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