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Abstract : Numerous studies of short-term, beat-to-beat variability in cardiovascular signals have used linear analysis

techniques. However, no study has been done about the appropriateness of linear techniques or the comparison between
linearities and nonlinearities in short-term, beat-to-beat variability. This paper aims to verify the appropriateness of linear
techniques by investigating nonlinearities in short-term, beat-to-beat variability. We compared linear autoregressive moving
average(ARMA) with nonlinear neural network(NN) models for predicting current instantaneous heart rate(HR) and mean
arterial blood pressure(BP) from past HRs and BPs. To evaluate these models, we used HR and BP time series from the
MIMIC database. Experimental results indicate that NN-based nonlinearities do not play a significant role and suggest that 10
technique provides adequate characterization of the system dynamics responsible for generating short-term, beat-to-beat
variability.
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Introduction

Numerous analyses of hemodynamic signals have been
performed to understand cardiovascular regulatory mecha-
nisms. Most studies of heart rate variability in cardi-
ovascular signals have relied mainly on linear analysis
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methods such as spectral methods or linear parametric
approaches[1,2]. Although linear methods provide a com-
prehensive view of characterizing fluctuations in hemo-
dynamic signals, these techniques cannot identify the pre-
sence of nonlinear coupling. It is also reported that there
are nonlinear interactions between the parasympathetic
and the sympathetic nervous systems with respect to
heart rate control. Previous studies in analysis of .car-
diovascular signals hypothesize linear relationships among

heart rate, blood pressure, and respiration. These papers
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assume that linear method should be adequate in signal
analysis. However, there are no comprehensive studies on
the appropriateness of linear methods in the analysis of
cardiovascular signals or comparison between linearities
and nonlinearities in the role of short-term, beat-to-beat
variability.

Despite numerous studies involving the analysis of
beat—-to-beat variability in cardiovascular signals, there
continues to be a debate about the completeness of linear
analysis techniques. At least one previous study has
attempted to settle this debate[3]. However, this study
only attributed the importance of the nonlinear analysis to
the description of the effect of instantaneous lung volume
and arterial blood pressure on heart rate fluctuations. It
only considered the significance of second-order nonli-
nearities. Thus, so far the role of nonlinear contributions
in hemodynamic variables has not been fully explored. In
this paper, we aim to evaluate thoroughly the role of
nonlinearities on short-term, beat-to-beat variability in a
clinical patient population using neural networks that can
account for higher-order nonlinearities, and also verify
that the linear analysis technique is appropriate in
representing adequate characterization of the system
dynamics responsible for generating short-term, beat-
to-beat variability.

To investigate the nonlinear characteristic on short-
term, beat-to—beat variability such as heart rate and
blood pressure, an appropriate nonlinear model should be
used. However, the database in this paper is collected
from human patients which can be considered as non-
linear systems, and there also exists inter-patients or
intra-patient variability. Thus, the nonlinear characteristic
of the database is inherently not known. These facts
make difficulties in determining the best suitable nonlinear
model for representing their variability. The approach ins-
tead is to choose widely used linear and nonlinear models
to analyze linear and nonlinear characteristic. Thus,
ARMA model as a linear model and neural networks,
lately applied to fields requiring temporal signal proce-
ssing such as system identification and nonlinear pre-
diction, as a nonlinear model are used respectively.

Multilayer neural networks(NN), an important class of
neural networks, have been used in diverse areas ranging
from communication[4] to biomedical engineering[5,6].
These networks, commonly referred to as multilayer
perceptrons, may be viewed as a practical vehicle for
performing a nonlinear input-output mapping. According
to the universal approximation theorem for multilayer
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perceptrons{7,8], a single hidden layer is sufficient for a
multilayer perceptron to uniformly approximate any con-
tinuous function. In terms of system identification[9], a
multilayver NN can realize linear and nonlinear systems.
These papers provide the theoretical background that the
multilaver NN approximating higher-order continuous
functions can evaluate the role of nonlinearities in
short-term, beat-to-beat variability of cardiovascular sig-
nals.

In the past few vears, a growing interest has bleen
devoted to methods, which allow introduction of temporal
dynamics into the multilayer network model. There are
two methods to provide static neural networks with
dynamic behavior. One method is to insert buffers
somewhere In the network to implement an explicit
memory of the past inputs such as buffered multilayer
perceptron and time-delay neural networks. The other
method is to use feedbacks such as Elman and Jordan
recurrent neural networks(RNN). It is known recently that
neural networks with feedbacks(or recurrent elements)
have useful dynamic modeling behavior, comparing with
buffered neural networks. Thus, Elman RNN is used as a
nonlinear model in this paper. As the training method, the
modified gradient descent algorithm is applied to improve
the convergence speed. This learning algorithm updates
the connecting weights between neurons as well as the
parameters of the activtion function at each iteration.

In order to evaluate that Elman RNN is able to appro—
ximate higher-order polynomials, we tested the prediction
of time series generated from linear(y(n)=0.7x(n)-0.4x~
(n-1)-0.1x(n-2)+0.25y(n-1)-0.1y(n~1)+0.4y(n-3)) and nonlinear
systems(y(n)=0.3x(n)-0.13x(n-2)+0.2y(n-1)-0.11y(n-3)-0.11x*(n~
1)+0.13y*(n-2)-0.18x(n-1)y(n-1)+0.06x(n-2)-0.08y*(n-1)+0.1x(n-
Dy*(n-2)+0.01x"(n-1)+0.01y*(n-2)-0.01x"(n-2)y*(n-1)). Tt
showed that the normalized root mean square errors were
almost zero(4.95X10™ for a linear system, 4.2><1073, 113X
10™ and 15%10™ for the second, third, and fourth order
nonlinear systems). Recently a paper[10] compared RNN
prediction with ARMA prediction on nonlinear and nons-
tationary signals such as Mackey-Glass time series and
speech signals, in which RNN-based prediction is superior
to the ARMA prediction. Thus, it can be said that the
RNN is capable of predicting higher order nonlinear
polynomials including linear signals.

This paper describes RNN-based nonlinear prediction
and compares its performance with that of a linear model
in order to evaluate the role of nonlinearities of short-
term, beat-to-beat variability in cardiovascular signals.
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Fig. 4. Example of RNN-based HR prediction (Record: 411, N=M=9)

We constructed and compared linear and nonlinear models
for predicting current heart rate(HR) and mean arterial
blood pressure(BP) from past values of HRs and single-
beat BPs. The former is the ARMA model, and the latter
is based on Elman type RNN. For the evaluation of these
models, we compared their mean-squared HR and BP
prediction errors using the MIMIC(Multi-parameter Inte—

lligent Monitoring for Intensive Care) database[11]. Based
on experimental results, it is verified that there is no sig—
nificant difference between RNN and ARMA models in
prediction of short term beat-to-beat variability, indicating
that linear techniques are appropriate to analyze the car—
diovascular signal analysis although weak nonlinearities exist.

J. Biomed. Eng. Res: Vol 24, No. 3, 2003



154

o558 A A48,

Error

NRMSE (RNNY

of

09

....... Original signal

RNN predicted signal

)

ARMA prediction eror

RNN prediction error

g
w
o
2 8
= B
= ko
B
a H a
5 ! 2
2
= 04 S
| | 2
bl )
03| j W
021
| Test data
EH I
o1 . . . .
0 50 100 150 200 250 300
Sample

(a) BP prediction

Sample

(b) Absolute prediction error

Fig. 6. Example of RNN-based BP prediction (Record: 240, N=M=9)

0.092f

0.09]

o088t

0086}

0 : without BP dalay
+ : with BP delay

Number of detay

(a) HR prediction

Fig. 6. RNN-based prediction error versus number of delays

s
08
0.6
04
0.2
*
% 0.2

0.6 0.8 1 1.2
NRMSE (ARMA)

(a) HR prediction

Error

NRMSE (RNN)

0.1 0 :without HR delay
+ @ with HR delay
0.095
0.09
e
e
~——
0.085 \\\ \9\\
e
0.08 >
1 2 3 4 s s ’ 8 °
Nurmber of delay
(b) BP prediction
09
0sh
o7l
06
o5} B *
0.4}

o
@
*

o
o

°

0 0.1 02 0.3 0.4 0.5 0.6 07 08 0
NRMSE (ARMA)

(b) BP prediction

Fig. 7. Graphical representation of NRMSE in HR and BP predictions

A|3%., 2003



Al

e

Neural network based prediction

Signal prediction means to estimate future signals
using past signals. Fig. 1 shows the block diagram of a
single-step prediction system.

The prediction 3 #) of the future »(x) is estimated
using only the delayed inputs x(n-M). Most linear pre-
diction systems, which estimate the future value using a
linear combination of input values, use the ARMA model
for finding all zeros and poles of the system transfer
function H(z) of the prediction filter, which is described
by the following equation.

;bkz_k
k

H(z) = —W (1)

The impulse response of the prediction filter is deter—
mined by the error signal e(n)=y(n)— 3(xn). The coeffi-
cients a, and b, of the IIR(Infinite Impulse Response)

filter are computed by minimizing error X |e(n)|% Fig.
n

2(a) shows the structure of linear ARMA prediction filter.

The linear model works well for signals generated by
linear systems. However, it is not appropriate for the p-
rediction of nonlinear and nonstationary signals. The car-
diovascular signals can be considered as nonliear and
nonstationary signals since the human is the pure non-
linear system. For the higher order nonlinear signal pro-
cessing using multilayer neural networks, dynamic neural
networks such as time-delay neural networks and recu-
rrent neural networks are adequate models. They use
feedback loops or delay elements as memories in order to
process temporal information, and can perform more com-
plex signal processing well. Thus, our approach for
dealing with the inherent nonlinearity of cardiovascular
signals is to replace the linear prediction filter with the
neural network based nonlinear adaptive filter. The neural
network used as a nonlinear filter in this paper is the
Elman type RNN shown in Fig. 2(b). It consists of three
layers. All the units in a layer are fully connected to all
the units in the following layers, ie. they are one-to-
many variable connecting weights. The input layer has
external inputs x(#) and additional inputs A(#) that are
fed from the outputs of all neurons of the hidden layer
with one-to-one weight connections. These recurrent
connections improve the dynamics of the network.

The learning method of the network is an extension of
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the gradient descent algorithm. It is modified to enhance
the convergence speed. The connecting weights between
neurons as well as the parameters of the node activation
function are updated at the same time using the error
backpropagation algorithm. The conventional learning al-
gorithm in the RNN updates only connecting weights, not
parameters of the activation function. All neurons in the
hidden and output Jayers use sigmoid transfer func-
tions[12]. The output of a node 7is as follows.

i) = Flokn)) = ——Em ()
1+e

where w»/{#) is the internal state of a neuron / and
g(n), s(n), v'(n) represent the gain, slope, and delay of
the activation function, respectively. The parameters of
the activation function are assumed to be time-varying
variables.

The cost function, the sum of squard error of the neu-
ral networks, is defined as

B(w =§ Seb(m =% Sdi(n) - yi(m)? 3)

The din) and y(n) are desired output and actual
output of the networks. The purpose of the adaptive
learning algorithm is to minimize the cost funtion E(n) by
adaptively adjusting weights w(n) and parameters p(n).
The p(n) represents g(n), s(n), and v’'(n) of the activation
function. The incremental weights Jw(#) and incremental
function parameters Adp(#) of the network are defined as

Aw(n) =— vw% + adw(n—1) )
dp(n)=~1, %f( Z) 5)

The 7, and 7, represent the update rates for weights

and function parameters, and the o represents the mo-
mentum rate. The momentum term adu(n—1) is added
to only the incremental weights to speed up the learning.
Egs. (6-10) show changes of weights dwg(#) and para-

meters dp,(n) for the output layer.

dw(n) =— 7,,0:(m) y(n) + adwi{n—1) (6)

J. Biomed. Eng. Res: Vol. 24, No. 3, 2003
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The 6,(n) is the local gradient of a neuron of the
output layer, y{m) and y(n) are neuron outputs of the
hidden and output layers, respectively. The #,(=7, for
gain, 7, for slope, and 7, for delay of the activation
function) represents the update rate for each parameter.
The dpn)(=dg(n) for gain, dsi(n) for slope, and
A (n) for delay of the function) represents the

incremental parameter of the activatin function in the
output layer.
The incremental weights Adw;(n) and parameters

Ap(n) of the hidden layer can be derived same way as

those of the output layer and are defined as follows.

dwidn) =—1,6{n)y{n)+adw;{n—1) 9)

on) = BB — 20,2 )

duln) (n) (10)
= 2615( n) wy(n)
Abj(n) =“‘77pg—fl§%
e Y

a |
=— ﬂpzé\k( n) wi{ 1) aﬁzg

The o/n) is the local gradient of a neuron of the
hidden layer. The Jdp{»n) represents an incremental
parameter of the activatin function in the hidden layer.
An adaptively tuned multilayer neural network updated
with above equations at every iteration is used to predict
time-varying heart rate and blood pressure.

Experimental results

To investigate the nonlinearities, we used HR and BP
time series from patients without diagnosed autonomic
dysfunction from the MIMIC database(http//www.phy-
sionet.org[13]). To get time series of heart rate, QRS
waves from ECG signals are firstly detected to recognize
every beat, and then HR time series is obtained by
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computing time differences between beats. The BP time
series is also collected by computing the mean of blood
pressure between beats. These HR and BP time series
are used as test signals to evaluate the prediction filters.
The data sets in the database were originally sampled at
125[Hz). A study[14] has shown that the choice of
sampling rate may affect accurate detection of QRS
complexes, especially if a low sampling rate is chosen.
However, the sampling rate of 125[Hz] used in this study
is high enough to allow for accurate detection of QRS
complexes. Several studies have shown that dynamics of
HR fluctuations are located at frequencies below 0.5[Hz].
Thus, instantaneous HR and BP signals are downsampled
by 3, resulting in a sampling rate of 125/3[Hz] and then
these decimated signals are used for prediction.

In this paper, the single-step prediction is performed in
two ways. First, the current HR is predicted based on
several past HRs and BPs. Next, the current BP is also
predicted using several past BPs and HRs.

HR(n)=ga(k) HR (n— k)

+/g‘bb(/e) BP (n— k) + e(n) (12)

Bp(n>=gc<k) BP (n— )

+ﬁbd(k) HR (n— B+ e(n) (13)

The M and N represent the delays of HR and BP. The
e(n) i1s the residue error after prediction. Fig. 3 shows
the structure for predicting HR(or BP). We used the
ARMA structure as a linear model and the RNN as a
nonlinear model in the prediction filter. The a(k), b(k),
c(k), and d(k) are coefficients of IR filter in ARMA
model. In RNN model, these coefficients are distributed
into connecting weights of the networks. Their prediction
results are compared each other to evaluate relative
performance of the linear and nonlinear models.

We tested the prediction on 10 different records from
the MIMIC database. Average segment length of all
records is about 13 minutes. Each segment was divided
into two equal parts. The first half of the segment was
used to train the prediction filter, and the second half
was used to test the predictive quality of both models.
The structure of the NN consists of the input layer with
neurons of external inputs{delayed M HRs and N BPs)
and with additional feedbacks from the hidden layer, the
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hidden layer with 10 neurons, and the output layer with
one neuron. The update rates of weights and parameters
of the network as well as the network structure are
determined empirically, thus they are slightly different for
each record. Typical values are as follows: learning rate
of 0.02, momentum rate of 0.0015, update rate of 0.01 for
both gain and slope, and 0.001 for delay in the activation
function of a neuron.

The network is trained for 10,000 iterations to reach a
stable error level, beyond that iteration the error does not
reduce much as iteration continues. The prediction should
be tested for all combinations of delays. However, it is
not proper since there are too many cases and it takes so
long time to experiment. Instead, the delays (M, N) of
the HR and BP in the input of the network are set equal
and tested for N=M=1, 3, 5, 7, and 9. The best delay for
each record is determined when the rate of error change
does not reduce significantly. The final prediction error is
the average of five experiments with different initial
values of the neural networks. For the linear ARMA
model, the model order, i.e., the order of poles and zeros
of H(z), for each data record is determined by use of the
Akaike information criterion[15].

Fig. 4(a) and 5(a) show representative examples of
RNN-based HR and BP predictions for both training and
test data. In these figures, the dotted and solid lines
represent the original and predicted signals for both
training and test data. Fig. 4(b) and 5(b) show examples
of prediction errors for both RNN-based(solid line) and
ARMA-based(dotted line) predictions. The errors are
absolute difference between the original signal and the
predicted signal. In the figures, we can identify that the
nonlinear neural network model can predict satisfactorily
HR and BP variations, and RNN prediction is better than
ARMA prediction since ARMA prediction error is larger
than RNN prediction error.

For the quantitative evaluation of the prediction error
only on the test data, we define the normalized root mean
square error(NRMSE) as follows.

g}l[ o«n)—E)

NRMSE=\|—F3 —————
Ssw - TT

(14)

where, e(n) = y(n)—¥(n), ¥n) and 3(xn) are the
sample values of the original and the predicted signals, E
and Y are averages of e(n) and y(m), N is the number
of samples to be evaluated. This NRMSE represents

fractional error with respect to what is predicted. Table 1
compares the prediction error of HR and BP for all
records. The value in the table is the best prediction
result for given delays and function parameters in the
test data set. The AVG and STD in the table represent
average and standard deviation of the prediction error for
all records.

From the table, it can be stated that the linear ARMA
model is able to represent 52.80% +/- 24.47% of the HR
variations, but the nonlinear RNN model accounts for
58.74% +/- 1657%. For the BP variations, the linear and
nonlinear models can represent 63.26% +/- 19.09% and
6757% +/- 11.78%, respectively. These results show that
the RNN-based model is about 6% and 4% better in
representing the nonlinearities of HR and BP variations
than the linear ARMA model in terms of NRMSE. Based
on paired T-tests, however, there is no significant di-
fference between linear and nonlinear predictions(p=0.098
for HR prediction and p=0.2156 for BP prediction). In
other words, there are not much nonlinearities in short— term,
beat-to-beat variability from a statistical point of view.

From the experimentation in the RNN-based prediction,
we found that the more delays the better the prediction
for HR and BP in both training data and test data sets.
It was also found that the HR(or BP) prediction using
past BPs(or HRs) is better than the prediction without
using past BPs(or HRs). Fig. 6 shows an example of the
RNN-based prediction error versus delays of HR or BP
for test data set. The error in the figure is computed
based on Eq. (14) assuming Y=0. The number of x-
axis indicates the number of delay, ie, N=M=+(0 for
with HR or BP delay, N=0 for without BP delay, and

Table 1. Summary of NRMSE in HR and BP predictions

Record HR BP
ARMA RNN ARMA RNN
411 0.5025 0.4332 0.7795 0.5020
408 0.4160 0.3965 0.4996 0.4854
401 0.3585 0.3558 0.2354 0.2625
224 0.3508 0.3953 0.1022 0.1378
240 0.3626 0.3336 0.3910 0.3687
055 0.4165 0.3776 0.3883 0.3792
211 0.3940 0.3629 0.3462 0.3674
041 0.2228 0.1401 0.2719 0.2317
417 1.1156 0.7896 0.4707 0.2963
218 0.5716 0.5416 0.1891 0.2119

AVG 0.4711 0.4126 0.3674 0.3243
STD 0.2447 0.1657 0.1909 0.1178

J. Biomed. Eng. Res: Vol. 24, No. 3, 2003
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M=0(0 for without HR delay. For example, in the HR
prediction of Fig. 6(a) the number 3 for with BP delay
means N=M=3 and the number 3 for without BP delay
means M=3 and N=0 in Eq. 12. We found similar
results in the BP prediction(refer to Fig. 6(b)).

Fig. 7 shows graphical representation of Table 1, ie,
NRMSE of RNN model versus NRMSE of ARMA model.
The "*" symbol means a coordinate point of NRMSE of
RNN and ARMA for each record, the "0”
mean of all records, and the solid lines represent standard

symbol means

deviations. From these figures, all “*” symbols except one
are distributed near the diagoanl line, which means that
there are no meaningful difference between these two
models in predicting HR and BP variations.

Conclusions

The aim of this study is to evaluate nonlinearities in
short-term, beat-to—beat variability in cardiovascular sig-
nals by performing signal prediction. We compared the li-
near ARMA and nonlinear neural network models in pre-
dicting instantaneous heart rate and mean arterial blood
pressure. Experimental results indicate that the neural
network based nonlinearities do not play a significant role
in short-term, beat—to-beat variability in the MIMIC pa-
tient population. This means that linear analysis techni-
ques provide adequate characterization of the system
dynamics responsible for generating short-term, beat-to-
beat variability. Thus, we conclude that the linear tech-
niques are appropriate to analyze cardiovascular signals
for these patients even though there exist weak non-
linearities. Further investigations on the appropriateness of
linear analysis techniques should be carried out in other
patient populations and with other nonlinear techniques.
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