Study on Nonlinearites of Short Term, Beat-to-beat Variability in Cardiovascular Signals

심혈관 신호에 있어서 단기간 beat-to-beat 변이의 비선형 역할에 관한 연구

  • Han-Go Choi (School of Electronic Engineering, Kumoh National Institute of Technology)
  • Published : 2003.06.01

Abstract

Numerous studies of short-term, beat-to-beat variability in cardiovascular signals have used linear analysis techniques. However, no study has been done about the appropriateness of linear techniques or the comparison between linearities and nonlinearities in short-term, beat-to-beat variability. This paper aims to verify the appropriateness of linear techniques by investigating nonlinearities in short-term, beat-to-beat variability. We compared linear autoregressive moving average(ARMA) with nonlinear neural network(NN) models for predicting current instantaneous heart rate(HR) and mean arterial blood pressure(BP) from past HRs and BPs. To evaluate these models. we used HR and BP time series from the MIMIC database. Experimental results indicate that NN-based nonlinearities do not play a significant role and suggest that 10 technique provides adequate characterization of the system dynamics responsible for generating short-term, beat-to-beat variability.

심장혈관 신호에 있어서 단기간의 beat-to-beat 변이(variability)에 대한 여러 연구에서 선형 분석기법들이 사용되었다. 그러나 단기간 beat-to-beat 변이에 대해 선형기법 사용의 타당성에 대한 연구나 선형과 비선형 특성을 비교한 연구는 수행되지 않았다. 본 논문의 목적은 단기간 beat-to-beat 변이의 비선형성 특성을 조사함으로써 선형기법 사용의 적절함을 증명하고자 한다. 이를 위해 선형 ARMA와 비선형 신경망(NN) 모델을 사용하여 예측을 수행하였는데, 과거의 순시 심박(HR)과 평균 혈압(BP)으로부터 현재의 심박과 혈압 예측을 상호 비교하였다. 이러한 예측모델을 평가하기 위해 MIMIC 데이터베이스로부터 HR와 BP 시계열을 사용하였다. 실험결과에 의하면 신경망에 의한 비선형성은 단기간 beat-to-beat 변이를 생성하는 시스템 동특성을 나타내는데 의미있는 역할을 하지 못하였으며, 이 사실은 ARMA 선형 분석기법이 이러한 시스템 동특성을 나타내는데 적절함을 보여주고 있다

Keywords

References

  1. Comput. Cardio v.16 Closed loop identification of cardiovascular regulatory mechanisms M.L.Appel;J.P.Saul;R.D.Berger;R.J.Cohen
  2. IEEE Trans Biomed. Eng. v.40 A tine domain approach for the fluctuation analysis of heart rate related to lung volume K.Yana;J.P.Saul;M.H.Perrot;R.J.Cohen
  3. IEEE Trans. Biomed. Eng. v.43 A dual-input nonlinear system analysis of autonomic modulation of heart rate K.H.Chom;T.J.Mullen;R.J.Cohen
  4. IEEE Trans. Biomed. Eng. v.39 Neural-network-based adaptive matched filtering for QRS detection Q.Xue;Y.H.Yu;W.J.Tomkins
  5. J. of KOSOMBE v.21 no.5 Enhancement of QRS complex using a neural network based ALE H.G.Choi;E.B.Shim
  6. IEEE Trans. Into. Theory v.39 Universal approximation bounds for superpositions of a sigmoidal function A.R.Barron
  7. Mathematics of Control,Signals and Systems v.2 Approximation by superpositons of a sigmodial function G.Cybenko
  8. Neural Computation v.7 Identification using feedforward networks A.V.Levin;K.S.Narendra
  9. J. IEEK v.35 Nonlinear prediction of nonstationary signals using neural networks H.G. Choi
  10. Computers in Cardiology v.23 A Database to Support Development and Evaluation of Intelligent Intensive Care Monitoring G.B.Moody;R.G.Mark
  11. Neural Networks: A Comprehensinve Foundation S.Haykin
  12. IEEE Eng. Med. and Bio. v.1 Physionet: A web-based resource for the study physiologic signals G.B.Moody;R.G.Mark;A.L.Goldberger
  13. IEEE Trans. Biomed. Eng. v.44 Linear and nonlinear ARMA model parameter estimation using an artificial neural network K.H.Chon;R.J.Cohen
  14. Ann. Instrum. Stat. Math v.21 Power spectrum esimation through autoregressive model fitting H.Akaike
  15. Adaptive Signal Processing B.Widrow;S.D.Stearns