• Title/Summary/Keyword: Assessment for Learning

Search Result 1,308, Processing Time 0.025 seconds

Development of Science Academic Emotion Scale for Elementary Students (초등학생 과학 학습정서 검사 도구 개발)

  • Kim, Dong-Hyun;Kim, Hyo-Nam
    • Journal of The Korean Association For Science Education
    • /
    • v.33 no.7
    • /
    • pp.1367-1384
    • /
    • 2013
  • The purpose of this study was to develop a Science Academic Emotion Scale for Elementary Students. To make a scale, authors extract a core of 14 emotions related to science learning situations from Kim & Kim (2013) and literature review. Items on the scale consisted of 14 emotions and science learning situations. The first preliminary scale had 174 items on it. The number of 174 items was reduced and elaborated on by three science educators. Authors verified the scale using exploratory factor analysis, confirmatory factor analysis, inter-item consistency and concurrent validity. The second preliminary scale consisted of 141 items. The preliminary scale was reduced to seven factors and 56 items by applying exploratory factor analysis twice. The seven factors include: enjoyment contentment interest, boredom, shame, discontent, anger, anxiety, and laziness. The 56 items were elaborated on by five science educators. The scale with 56 items was fixed with seven factors and 35 items to get the final scale by applying confirmatory factor analysis twice. Except for Chi-square and GFI (Goodness of Fit Index), other various goodness of fit characteristics of the seven factors and 35 items model showed good estimated figures. The Cronbach of the scale was 0.85. The Cronbach of seven factors are 0.95 in enjoyment contentment interest, 0.81 in boredom, 0.87 in shame, 0.82 in discontent, 0.87 in anger, 0.77 in anxiety, 0.81 in laziness. The correlation coefficient was 0.59 in enjoyment contentment interest, 0.54 in anxiety, 0.42 in shame, and 0.28 in boredom, which were estimated using the Science Academic Emotion Scale and National Assessment System of Science-Related Affective Domain (Kim et al., 1998). Based on the results, authors judged that the Science Academic Emotion Scale for Elementary Students achieved an acceptable validity and reliability.

An Intelligent Decision Support System for Selecting Promising Technologies for R&D based on Time-series Patent Analysis (R&D 기술 선정을 위한 시계열 특허 분석 기반 지능형 의사결정지원시스템)

  • Lee, Choongseok;Lee, Suk Joo;Choi, Byounggu
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.79-96
    • /
    • 2012
  • As the pace of competition dramatically accelerates and the complexity of change grows, a variety of research have been conducted to improve firms' short-term performance and to enhance firms' long-term survival. In particular, researchers and practitioners have paid their attention to identify promising technologies that lead competitive advantage to a firm. Discovery of promising technology depends on how a firm evaluates the value of technologies, thus many evaluating methods have been proposed. Experts' opinion based approaches have been widely accepted to predict the value of technologies. Whereas this approach provides in-depth analysis and ensures validity of analysis results, it is usually cost-and time-ineffective and is limited to qualitative evaluation. Considerable studies attempt to forecast the value of technology by using patent information to overcome the limitation of experts' opinion based approach. Patent based technology evaluation has served as a valuable assessment approach of the technological forecasting because it contains a full and practical description of technology with uniform structure. Furthermore, it provides information that is not divulged in any other sources. Although patent information based approach has contributed to our understanding of prediction of promising technologies, it has some limitations because prediction has been made based on the past patent information, and the interpretations of patent analyses are not consistent. In order to fill this gap, this study proposes a technology forecasting methodology by integrating patent information approach and artificial intelligence method. The methodology consists of three modules : evaluation of technologies promising, implementation of technologies value prediction model, and recommendation of promising technologies. In the first module, technologies promising is evaluated from three different and complementary dimensions; impact, fusion, and diffusion perspectives. The impact of technologies refers to their influence on future technologies development and improvement, and is also clearly associated with their monetary value. The fusion of technologies denotes the extent to which a technology fuses different technologies, and represents the breadth of search underlying the technology. The fusion of technologies can be calculated based on technology or patent, thus this study measures two types of fusion index; fusion index per technology and fusion index per patent. Finally, the diffusion of technologies denotes their degree of applicability across scientific and technological fields. In the same vein, diffusion index per technology and diffusion index per patent are considered respectively. In the second module, technologies value prediction model is implemented using artificial intelligence method. This studies use the values of five indexes (i.e., impact index, fusion index per technology, fusion index per patent, diffusion index per technology and diffusion index per patent) at different time (e.g., t-n, t-n-1, t-n-2, ${\cdots}$) as input variables. The out variables are values of five indexes at time t, which is used for learning. The learning method adopted in this study is backpropagation algorithm. In the third module, this study recommends final promising technologies based on analytic hierarchy process. AHP provides relative importance of each index, leading to final promising index for technology. Applicability of the proposed methodology is tested by using U.S. patents in international patent class G06F (i.e., electronic digital data processing) from 2000 to 2008. The results show that mean absolute error value for prediction produced by the proposed methodology is lower than the value produced by multiple regression analysis in cases of fusion indexes. However, mean absolute error value of the proposed methodology is slightly higher than the value of multiple regression analysis. These unexpected results may be explained, in part, by small number of patents. Since this study only uses patent data in class G06F, number of sample patent data is relatively small, leading to incomplete learning to satisfy complex artificial intelligence structure. In addition, fusion index per technology and impact index are found to be important criteria to predict promising technology. This study attempts to extend the existing knowledge by proposing a new methodology for prediction technology value by integrating patent information analysis and artificial intelligence network. It helps managers who want to technology develop planning and policy maker who want to implement technology policy by providing quantitative prediction methodology. In addition, this study could help other researchers by proving a deeper understanding of the complex technological forecasting field.

A Study on Science Teachers' Perceptions of the 6th High School Science Curriculum and Their Practices (제6차 고등학교 과학 교육과정과 실천에 대한 과학 교사의 인식 조사)

  • Noh, Tae-Hee;Kwon, Hyeok-Soon;Kim, Hye-Kyoung;Park, Sung-Jae
    • Journal of The Korean Association For Science Education
    • /
    • v.20 no.1
    • /
    • pp.20-28
    • /
    • 2000
  • We examined how science teachers in academic high schools perceived the 6th science curriculum and how they practiced under the curriculum. A nationwide survey was administered to obtain the responses from 402 teachers of 135 high schools. Most thought that the main themes of curriculum revision were well-embedded in the 'objectives', and that the 'content and content structure' were proper. However, they thought that the 'objectives' were not stated explicitly enough to develop teaching materials and to improve actual teaching and evaluation, and that some statements in the sections of 'method' and 'evaluation' were not proper if considered actual teachers' ability to teach inquiry and educational facilities. Many teachers also felt that the information about the curriculum was not sufficiently included at in-service teacher training programs, and that students' knowledge, attitude, and problem solving ability were not enhanced. Only few teachers were found to apply the STS approaches, reconstruct lessons, vary the structure of learning group, and develop evaluation tools with their colleagues. The lack of the practices was explained by entrance-examination-centered instruction and assessment, poor educational facilities, and lack of innovative teaching materials.

  • PDF

The Application of a Science Camp and the Development of Experiment and Practice Program Based on STEAM for High School Students (고등학교 융합과학(STEAM) 실험-실습 프로그램 개발과 과학 캠프 적용)

  • Yoon, Mabyong;Hong, Jaeyoung
    • Journal of Science Education
    • /
    • v.36 no.2
    • /
    • pp.263-278
    • /
    • 2012
  • The purpose of this study was to introduce the development and application of STEAM education science camp program conducted in J university for high school students and to suggest the ideal class design method and procedures along with STEAM logics and viewpoints. The pre-service science teachers participated in the class developed teaching materials in accordance with STEAM education model and the teaching procedures and materials were modified and supplemented through the education specialist group's assessment and the actual class. The developed program was applied to the second-year students(N=45) of a science-focus school in Jeonju City and the first and second-year students(N=61) of 13 high schools in Jeonbuk province who participated in the 'STEAM experiment camp' during the summer vacation in 2012. After the class, the learners' average satisfaction level in the program content and activities was 4.02 point out of 5 point and the pre-service science teachers' average satisfaction level in the program and teaching-learning was 4.28 point. Therefore, the STEAM education program of this case study can be a model to the teachers who desire to plan the science-focus STEAM class and conduct it.

  • PDF

Analysis of Pre-service Secondary Chemistry Teachers' Uses of Teacher's Guide in Planning Lessons (중등 예비화학교사의 수업 계획에서 교사용 지도서의 활용 방식 분석)

  • Yang, Chanho;Song, Nayoon;Kim, Minhwan;Noh, Taehee
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.4
    • /
    • pp.681-691
    • /
    • 2016
  • In this study, we investigated pre-service secondary chemistry teachers' use of teacher's guide in planning lessons. Eleven pre-service teachers at a college of education in Seoul participated in this study. Textbooks and teacher's guide books including various teaching materials were provided. Pre-service teachers used teacher's guide while they planned two lessons, which were a lecture and an instruction using science teaching model. A semi-structured interview was conducted. All of the teaching-learning materials and interviews were analyzed. The analyses of the results revealed that most pre-service teachers followed each lesson presented in teacher's guide, but they did not consider the structure of the whole unit and science curriculum. There were some cases that the exemplary lesson planning in teacher's guide helped them to select science teaching model. They modified the questions of textbook activity in planning their lecture. On the other hand, they modified the activity to fit each stage of the model in planning their instruction using science teaching models. Most pre-service teachers constructed their own worksheets by applying the materials of the teacher's guide. They recognized the components of assessment by considering exemplary lesson planning from the teacher's guide, and created questions by modifying the content of textbooks and teacher's guide books including various teaching materials. However, the questions which they made were limited in context of knowledge. They evaluated that introductory questions were not of interest to students, and modified or added new materials. Educational implications of these findings are discussed.

Characteristics of Pre-service Teachers' PCK in the Activities of Content Representation of Boiling Point Elevation (끓는점 오름에 대한 내용표상화(Content Representation) 활동에서 나타난 예비교사의 PCK 특징)

  • Lee, Young Min;Hur, Chinhyu
    • Journal of The Korean Association For Science Education
    • /
    • v.33 no.7
    • /
    • pp.1385-1402
    • /
    • 2013
  • This study analyzes pre-service teachers' PCK dealing with visualization of the contents related to boiling point elevation and teaching methods in mock-lessons. As a result of analyzing pre-service teachers' knowledge based on PCK factors, most of the pre-service teachers accentuated on understanding boiling point elevation conceptually, whereas some of the others inclined to make students understand boiling point elevation in a scientific way, let the kids use numerical formulas to describe the concept, and motivate them to learn through the examples in real life. The pre-service teachers represented majority of the important facts of boiling point elevation as the knowledge required to understand things conceptually. However, they did not focus on improving the scientific thinking and inquiring levels of the students. Also, the pre-service teachers tended to teach at the level and order of the textbook. In some other cases, they considered the vocabularies and materials in the textbook (which could have been highlighted in the editing sequence) as the main topic to learn, or regarded the goal as giving students the ability to solve exercises in the textbook. It turned out that the pre-service teachers had a low level of knowledge of their students. It is recommended that they should make use of the materials given (such as data related to the misconception of students) during the training session. The knowledge of teaching and evaluating students was described superficially by the pre-service teachers; they merely mentioned the applications of models, such as the cyclic model and discovery learning, rather than thinking of a method related to the goals, or listed general assessment methods.

Appropriation of Human Resources into Human Assets and Its Typology (인적자원의 인적자산화 과정과 자산유형)

  • Jeong, Kioh
    • Journal of Service Research and Studies
    • /
    • v.9 no.2
    • /
    • pp.77-88
    • /
    • 2019
  • Appropriation means the process of transforming resources to property. John Locke earlier investigated the appropriation process of natural resources into the land property, which grounded the jurisprudential base of the private ownership of the land. In the same way human resources are transformed into the human assets. Appropriation process, very rarely studied so far, in this case of human property is the focus of this paper. The appropriation of intangible property is by far easier than the appropriation of tangible property. Learning is a process of embodiment, which naturally mean the process of appropriation. For the material resources which exist out of human body, appropriation necessary need special philosophical and institutional justification. In the process appropriation for intangibles, investigator found, appropriator and learner either can be same, or can be differentiated. In the former case substantial human assets are created while in the latter relational human assets are built. After the discussion of appropriation process, Investigator proceeds to the problem of visualizing the invisibles. Evaluation and assessment issue were discussed in this perspective. Qualification system is particularly noted as a system to regulate substantial human assets including their issuing and registration. The work done in this paper would contribute in understanding the law of education and the law of qualification.

Importance-Performance Analysis (IPA) of the Core Competence of Gifted Education Teachers (영재교육 담당교원의 핵심역량 인식에 대한 중요도와 실행도(IPA) 분석)

  • Lee, Mina;Park, Sung Hee
    • Journal of Gifted/Talented Education
    • /
    • v.25 no.6
    • /
    • pp.927-949
    • /
    • 2015
  • The purpose of this study was to find out the difference between importance and performance regarding perception of core competence of gifted education teachers through importance-performance analysis (IPA). One hundred fourteen elementary gifted education teachers including math and science participated in the study. The collected survey data was analyzed with IPA matrix. As the result, firstly, there was significant difference between importance and performance regarding perception of core competence of gifted education teachers. Secondly, core competencies of 'understanding knowledge', 'research and instruction', 'passion and motivation', and 'ethics' are high in both perceptions of importance and performance. However, both 'communication and practices' and 'professional curriculum development' are low. Thirdly, there was a difference in core competence of gifted education teachers between math and science at the competence of 'passion and motivation'. Math gifted education teachers perceived 'passion and motivation' high in both importance and performance while science gifted education teachers perceived its importance low and performance high. In addition, math gifted education teachers showed lower performance compared to its importance in the sub-categories; 'knowledge of gifted development', 'gifted child assessment', 'information gathering and its literacy', and 'creative answers to various questions'. However, science gifted education teachers showed lower performance compared to its importance in sub-categories; 'higher-order thinking skills in its subject', 'teaching methodology for self-directed learning', 'problem behavior of the gifted', and 'counseling the gifted'.

The Teaching Competency and Educational Needs of Electricity·Electronic·Communication Technical Teachers (전기·전자·통신 계열 공업교사의 교수능력과 교육요구)

  • Lee, Myunghun;Na, Seungil
    • 대한공업교육학회지
    • /
    • v.31 no.2
    • /
    • pp.177-202
    • /
    • 2006
  • The purpose of this study was to determine the present teaching competency level and the educational needs of electricity electronic communication technical teachers. The population was electricity electronic communication technical teachers, 750 teachers were sampled for this study. A survey questionnaire consisted of teaching competencies scale including 3 domains based on Performance-Based Teacher Education Modules. The professional competencies scale consisted of 5-point Likert-type 30 items for them to rate the importance and also to indicate the teaching competency level. A questionnaire was mailed to the sample and 443 returned questionnaires were analyzed after data cleaning. The educational needs of teachers were calculated by using the Borich's needs assessment formula. The findings of this study were as follows. 1) electricity electronic communication technical teachers perceived all the thirty competencies as highly important ones. 2) They perceived that their current teaching competency level was just beyond the ordinary level but was lower than the good level. 3) The highest needs were 'determining learning level & interests of students', 'applying problem solving techniques', 'reconstructing lesson contents', 'establishing lesson objectives'. 4) They have a different level of educational needs on the competencies according to their gender, terminal education level, year of teaching experience, practical work experience, school type(national public school/private school), and school location.

Exploration of Changes in TIMSS Science Achievement and Educational Context Variables of Cohort Groups with Grade Change (학년 변화에 따른 코호트 집단의 TIMSS 과학 성취도 및 교육맥락변인의 변화 탐색)

  • Kwak, Youngsun
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.12 no.2
    • /
    • pp.119-130
    • /
    • 2019
  • The TIMSS assessment is conducted every four years, and Korean fourth grade cohort in TIMSS 2011 participated in TIMSS 2015 again as eighth graders, which produced the first achievement data of the cohort group of elementary and middle schools. In this study, in order to investigate the causes of the decline in Korean students' science achievement with grade changes from the fourth to the eighth grade, we analyzed educational context variables such as characteristics of students, teachers, and classroom instructions of the top 5 achievement countries participated in both TIMSS 2011 and TIMSS 2015. According to the results, students' sense of school belonging increased, whereas students' positive attitudes toward science teaching decreased with the grade change from the fourth to the eighth. As for the teacher characteristics, the teacher's professional development activity increased, and the teacher's confidence in science teaching showed similar tendency to the international average. Regarding classroom instruction characteristics, the frequency of inquiry-related science activities was highest at the fourth grade, and lower than the international average at the eighth grade. Based the results, we suggested implications for science teaching and learning as well as further studies including development of differentiated strategy by the school level to improve students' achievement, the necessity of converting into more student-engaging science classes, and the necessity of in-depth study on the teacher related educational contextual variables.