• Title/Summary/Keyword: As₄O/sub 6/

Search Result 1,784, Processing Time 0.03 seconds

Application of Photocatalytic Degradation for Efficient Treatment of Organic Matter in Landfill Leachate in Jeju Island (제주도 매립장 침출수 중 유기물의 효율적 처리를 위한 광촉매 분해 반응의 응용)

  • Lee, Chang-Han;Lee, Taek-Kwan;Cho, Eun-Il;Kam, Sang-Kyu
    • Journal of Environmental Science International
    • /
    • v.31 no.8
    • /
    • pp.677-689
    • /
    • 2022
  • In order to photocatalytically treat organic matter (CODCr) and chromaticity effectively, chemical coagulation and sedimentation processes were employed as a pretreatment of the leachate produced from landfill in Jeju Island. This was performed using FeCl3·6H2O as a coagulant. For the treated leachate, UV/TiO2 and UV/TiO2/H2O2 systems were investigated, using 4 types of UV lamps, including an ozone lamp (24 W), TiO2 as a photocatalyst, and/or H2O2 as an initiator or inhibitor for photocatalytic degradation. In the chemical coagulation and sedimentation process using FeCl3·6H2O, optimum removal was achieved with an initial pH of 6, and a coagulant dosage of 2.0 g/L, culminating in the removal of 40% CODCr and 81% chromaticity. For the UV/TiO2 system utilizing an ozone lamp and 3 g/L of TiO2, the optimum condition was obtained at pH 5. However, the treated CODCr and chromaticity did not meet the emission standards (CODCr: 400 mg/L, chromaticity: 200 degrees) in a clean area. However, for a UV/TiO2/H2O2 system using 1.54 g/L of H2O2 in addition to the above optimum UV/TiO2 system, the results were 395 mg/L and 160 degrees, respectively, which were within the emission standard limits. The effect of the UV lamp on the removal of CODCr, and chromaticity of the leachate decreased in the order of ozone (24 W) lamp > 254 nm (24 W) lamp > ozone (14 W) lamp > 254 nm (14 W) lamp. Only CODCr and chromaticity treated with the ozone (24 W) lamp met the emission standards.

Fabrication of a Novel Ultra Low Temperature Co-fired Ceramic (ULTCC) Using BaV2O6 and BaWO4 (BaV2O6와 BaWO4을 이용한 초저온 동시소성 세라믹 제조)

  • Kim, Duwon;Lee, Kyoungho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.4
    • /
    • pp.11-18
    • /
    • 2021
  • A novel microwave dielectric composite material for ultra-low temperature co-fired ceramics (ULTCC) with (1-x)BaWO4-xBaV2O6 (x=0.54~0.85) composition was prepared by firing a mixture of BaWO4 and BaV2O6. Shrinkage tests showed that the ceramic composite begins to densify at a temperature as low as 550℃ and can be sintered at 650℃ with 98% of relative density under the influence of BaV2O6. X-ray diffraction analysis showed that BaWO4 and BaV2O6 coexisted and no secondary phase was detected in the sintered bodies, implying good chemical compatibility between the two phases. Near-zero temperature coefficients of the resonant frequency (𝛕f) could be achieved by controlling the relative content of the two phases, due to their positive and negative 𝛕f values, respectively. With increasing BaV2O6 (x from 0.53 to 0.85), the 𝛕f value of the composites increased from -7.54 to 14.49 ppm/℃, εr increased from 10.08 to 11.17 and the quality factor (Q×f value) decreased from 47,661 to 37,131 GHz. The best microwave dielectric properties were obtained for x=0.6 samples with εr=10.4, Q×f=44,090 GHz, and 𝛕f=-2.38 ppm/℃. Chemical compatibility experiments showed the developed composites are compatible with aluminum electrode during co-firing process.

Properties of Green-Emitting CaNb2O6:Tb3+ Thin Films Grown by Radio-Frequency Magnetron Sputtering (라디오파 마그네트론 스퍼터링으로 성장한 녹색 발광 CaNb2O6:Tb3+ 박막의 특성)

  • Seonkyeong Kim;Shinho Cho
    • Korean Journal of Materials Research
    • /
    • v.33 no.10
    • /
    • pp.400-405
    • /
    • 2023
  • Tb3+-doped CaNb2O6 (CaNb2O6:Tb3+) thin films were deposited on quartz substrates at a growth temperature of 300 ℃ using radio-frequency magnetron sputtering. The deposited thin films were annealed at several annealing temperatures for 20 min and characterized for their structural, morphological, and luminescent properties. The experimental results showed that the annealing temperature had a significant effect on the properties of the CaNb2O6:Tb3+ thin films. The crystalline structure of the as-grown CaNb2O6:Tb3+ thin films transformed from amorphous to crystalline after annealing at temperatures greater than or equal to 700 ℃. The emission spectra of the thin films under excitation at 251 nm exhibited a dominant emission band at 546 nm arising from the 5D47F5 magnetic dipole transition of Tb3+ and three weak emission bands at 489, 586, and 620 nm, respectively. The intensity of the 5D47F5 (546 nm) magnetic dipole transition was greater than that of the 5D47F6 (489 nm) electrical dipole transition, indicating that the Tb3+ ions in the host crystal were located at sites with inversion symmetry. The average transmittance at wavelengths of 370~1,100 nm decreased from 86.8 % at 700 ℃ to 80.5 % at an annealing temperature of 1,000 ℃, and a red shift was observed in the bandgap energy with increasing annealing temperature. These results suggest that the annealing temperature plays a crucial role in developing green light-emitting CaNb2O6:Tb3+ thin films for application in electroluminescent displays.

Effect of Mg Additive in the Bi1.84Pb0.34Sr1.91Ca2.03Cu3.06O10+δ(110 K phase) Superconductors (Bi1.84Pb0.34Sr1.91Ca2.03Cu3.06O10+δ(110 K 상)산화물 고온초전도체에 Mg 첨가에 따른 영향)

  • 이민수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.6
    • /
    • pp.522-531
    • /
    • 2003
  • Samples with the nominal composition, B $i_{1.84}$P $b_{0.34}$S $r_{1.91}$C $a_{2.03}$C $u_{3.06}$ $O_{10+{\delta}}$ high- $T_{c}$ superconductors containing MgO as an additive were fabricated by a solid-state reaction method. Samples with MgO of 5~30 wt% each were sintered at 820~86$0^{\circ}C$ for 24 hours. The structural characteristics, critical temperature, grain size and image of mapping with respect to MgO contents were analyzed by XRD(X-Ray Diffraction), SEM(Scanning Electron Microscope) and EDS(Energy dispersive X-ray spectrometer) respectively. As MgO contents increased, intensity of MgO Peaks and ratio of Bi-2212 phase in superconductors intensified and the proportion of the phase transition from Bi-2223 to Bi-2212 was increased.

A Study on the Chemical Composition and Structure of Sludge, Compost and Charcoal (폐수처리 슬럿지와 퇴비 및 목탄의 화학적 특성과 구조에 관한 연구)

  • 임기표;위승곤
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.1
    • /
    • pp.27-32
    • /
    • 2003
  • To understand the chemical structure of sewer sludge in comparison with commercial compost and charcoal used as a soil improver, it was carried out to analyse their ash contents and metal ions, and to elucidate the chemical structure of their residuals after a sequential treatment of alcohol-benzene(1:2) extraction in Soxhlet, 3% HCl reflux and 79% H₂SO₄ hydrolysis, using CHNS analyzer and solid C-13 NMR spectrometer. The results obtained were as follows: 1. Ash content of sludge was about 46% that is higher than those of compost (17%) and charcoal (4%). 2. The residual of sludge after a sequential treatment of HCl and H₂SO₄ hydrolyses had high ash content about 23%, too. 3. The sludge seems to be suitable to the soil improver because the content of heavy metal ions in sludge was near the compost and below the organic fertilizer standard. 4. Elemental composition of sludge residual after HCl-H₂SO₄ hydrolyes was C/sub 56/H/sub 91/O/sub 12/N₂S = (C/sub 6/H/sub 10/O/sub 5/)/sub 7/(C/sub 6/H₄)/sub 7/C₂H/sub 43/O₂N₂S, similar to C/sub 103/H/sub 122/O/sub 33/N/sub 6/S = (C/sub 6/H/sub 10/O/sub 5/)/sub 6/(C/sub 6/H₄)/sub 10/C/sub 7/H/sub 22/O₃N/sub 6/S of compost. 5. The sludge residual had proved to have both considerable aliphatic and aromatic groups, but the compost residual to have mainly aliphatic groups and the charcoal to have mainly aromatic groups, through the peak analysis of solid C-13 NMR charts. 6. So, the sewer sludge is proved to have a considerable amount of aromaticity like in woody biomass containing lignin.

Effects of Matrix Material Particle Size on Mullite Whisker Growth

  • Hwang, Jinsung;Choe, Songyul
    • Korean Journal of Materials Research
    • /
    • v.31 no.6
    • /
    • pp.313-319
    • /
    • 2021
  • Understanding of effects of changes in the particle size of the matrix material on the mullite whisker growth during the production of porous mullite is crucial for better design of new porous ceramics materials in different applications. Commercially, raw materials such as Al2O3/SiO2 and Al(OH)3/SiO2 are used as starting materials, while AlF3 is added to fabricate porous mullite through reaction sintering process. When Al2O3 is used as a starting material, a porous microstructure can be identified, but a more developed needle shaped microstructure is identified in the specimen using Al(OH)3, which has excellent reactivity. The specimen using Al2O3/SiO2 composite powder does not undergo mulliteization even at 1,400 ℃, but the specimen using the Al(OH)3/SiO2 composite powder had already formed complete mullite whiskers from the particle size specimen milled for 3 h at 1,100 ℃. As a result, the change in sintering temperature does not significantly affect formation of microstructures. As the particle size of the matrix materials, Al2O3 and Al(OH)3, decreases, the porosity tends to decrease. In the case of the Al(OH)3/SiO2 composite powder, the highest porosity obtained is 75 % when the particle size passes through a milling time of 3 h. The smaller the particle size of Al(OH)3 is and the more the long/short ratio of the mullite whisker phase decreases, the higher the density becomes.

Preparation of cobalt oxide(Co3O4·CoO) ultra fine particles using cobalt(II) chloride hexahydrate and crystalline cellulose as a starting materials (Cobalt(II) chloride hexahydrate와 결정성 셀룰로오스를 출발물질로 사용한 산화코발트(Co3O4·CoO) 초미세입자의 합성)

  • Soo-Jong Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.587-592
    • /
    • 2023
  • Cobalt oxide (Co3O4·CoO) ultra fine particles were synthesized by liquid phase precursor method. cobalt(II) chloride hexahydrate (CoCl2·6H2O) was as a starting material. A plant-derived crystalline cellulose was used as impregnating materials. A impregnated precursor was calcined at a temperature of 350 to 900℃ to obtain cobalt oxide particles having a particle size of 1 to 10㎛. The crystallization process and morphology according to the calcination temperature were examined, and the properties of the synthesized powder were evaluated using SEM and XRD. It was confirmed that a crystal phase of Co3O4 began to form around 350℃ and crystal growth occurred up to 900℃. At a temperature above 500℃, the Co3O4 crystal was changed to another crystal phase CoO.

Current-Voltage and Impedance Characteristics of ZnO-Zn2BiVO6-Co3O4 Varistor with Temperature (ZnO-Zn2BiVO6-Co3O4 바리스터의 전류-전압 및 임피던스의 온도)

  • Hong, Youn Woo;Kim, You Bi;Paik, Jong Hoo;Cho, Jeong Ho;Jeong, Young Hun;Yun, Ji Sun;Park, Woon Ik
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.440-446
    • /
    • 2016
  • This study introduces the characteristics of current-voltage (I-V) and impedance variance for $ZnO-Zn_2BiVO_6-Co_3O_4$ (ZZCo), which is sintered at $900^{\circ}C$, according to temperature changes. ZZCo varistor demonstrates dramatic improvement of non-linear coefficient, ${\alpha}=66$, with lower leakage current and higher insulating resistivity than those of ZZ ($ZnO-Zn_2BiVO_6$) from the aspect of I-V curves. While both systems are thermally stable up to $125^{\circ}C$, ZZCo represents a higher grain boundary activation energy with 1.05 eV and 0.94 eV of J-E-T and from IS & MS, respectively, than that of ZZ with 0.73 eV and 0.82 eV of J-E-T and from IS & MS, respectively, in the region above $180^{\circ}C$. It could be attributed to the formation of $V^*_o$(0.41~0.47 eV) as dominant defect in two systems, as well as the defect-induced capacitance increase from 781 pF to 1 nF in accordance with increasing temperature. On the other hand, both the grain boundary capacitances of ZZ and ZZCo are shown to decrease to 357 pF and 349 pF, respectively, while the resistances systems decreased exponentially, in accordance with increasing temperature. So, this paper suggests that the application of newly formed liquid phases as sintering additives in both $Zn_2BiVO_6$ and the ZZCo-based varistors would be helpful in developing commercialized devices such as chips, disk-type ZnO varistors in the future.

Porous Sn-incorporated Ga2O3 nanowires synthesized by a combined process of powder sputtering and post thermal annealing (분말 스퍼터링과 후열처리 복합 공정으로 제조한 주석 함유 갈륨 산화물 다공성 나노와이어)

  • Lee, Haram;Kang, Hyon Chol
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.245-250
    • /
    • 2019
  • We investigated the post-annealing effect of Sn-incorporated β-Ga2O3 (β-Ga2O3 : Sn) nanowires (NWs) grown on sapphire (0001) substrates using radio-frequency powder sputtering. The β-Ga2O3 : Sn NWs were converted to a porous structure during the vacuum annealing process at 800℃. Host non-stoichiometric Ga2O3-x, is transformed into stoichiometric Ga2O3, where Sn atoms separate and form Sn nano-clusters that gradually evaporate in a vacuum atmosphere. As a result, the amount of Sn atoms was reduced from 1.31 to 0.27 at%. Pores formed on the sides of β-Ga2O3 : Sn NWs were observed. This increases the ratio of the surface to the volume of β-Ga2O3 : Sn NWs.

The optical and thermal properties of Li2O-BaO-Ga2O3-TeO2-TiO2-GeO2 mid-infrared transmission glass (Li2O-BaO-Ga2O3-TeO2-TiO2-GeO2 계 중적외선 투과 유리의 조성에 따른 광학적, 열적 특성)

  • Minsung Hwang;Jaeyeop Chung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.6
    • /
    • pp.250-254
    • /
    • 2023
  • In this study, Li2O-BaO-Ga2O3-TeO2-TiO2-GeO2 glasses with high transmittance in mid-infrared region and high refractive indices were successfully synthesized. The relationship between glass properties and glass composition was analyzed. In Li2O-BaO-Ga2O3-TeO2-TiO2-GeO2 glass system, as increasing TeO2 concentration, the refractive index increases and the glass transition temperature decreases. In addition, as increasing BaO concentration, the refractive index increases without decrease of Abbe number. The IR-cut off wavelength shifted to the longer wavelength with increasing TeO2 and BaO contents due to their large molecular weight. The glass transition temperature significantly decreases when BaO was replaced with Li2O.