DOI QR코드

DOI QR Code

The optical and thermal properties of Li2O-BaO-Ga2O3-TeO2-TiO2-GeO2 mid-infrared transmission glass

Li2O-BaO-Ga2O3-TeO2-TiO2-GeO2 계 중적외선 투과 유리의 조성에 따른 광학적, 열적 특성

  • Minsung Hwang (Display Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Jaeyeop Chung (Display Materials Center, Korea Institute of Ceramic Engineering and Technology)
  • 황민성 (한국세라믹기술원 디스플레이소재센터) ;
  • 정재엽 (한국세라믹기술원 디스플레이소재센터)
  • Received : 2023.11.14
  • Accepted : 2023.12.01
  • Published : 2023.12.31

Abstract

In this study, Li2O-BaO-Ga2O3-TeO2-TiO2-GeO2 glasses with high transmittance in mid-infrared region and high refractive indices were successfully synthesized. The relationship between glass properties and glass composition was analyzed. In Li2O-BaO-Ga2O3-TeO2-TiO2-GeO2 glass system, as increasing TeO2 concentration, the refractive index increases and the glass transition temperature decreases. In addition, as increasing BaO concentration, the refractive index increases without decrease of Abbe number. The IR-cut off wavelength shifted to the longer wavelength with increasing TeO2 and BaO contents due to their large molecular weight. The glass transition temperature significantly decreases when BaO was replaced with Li2O.

본 연구에서는 중적외선 영역에서 투과 성능이 우수하며, 높은 굴절률을 갖는 Li2O-BaO-Ga2O3-TeO2-TiO2-GeO2계 유리를 합성하였으며, 각 성분의 함량 변화에 따른 열적, 광학적 특성을 분석하였다. Li2O-BaO-Ga2O3-TeO2-TiO2-GeO2 계 유리에서, TeO2의 함량이 증가함에 따라 굴절률이 증가하며 동시에 유리 전이 온도가 낮아짐을 확인하였다. 또한 BaO의 함량이 증가함에 따라 아베수의 감소 없이 굴절률이 증가하였다. IR cut-off 파장은 TeO2 및 BaO의 함량이 증가함에 따라 장파장으로 이동하는 것을 확인하였으며 이는 TeO2 및 BaO의 큰 몰질량 때문인 것으로 예상된다. Li2O의 경우, BaO와 치환 형태로 첨가되었으며, 그 함량이 늘어날수록 굴절률의 큰 감소 없이, 유리 전이온도를 감소시킬 수 있는 것으로 확인되었다.

Keywords

Acknowledgement

본 연구는 산업통상자원부에서 지원하는 전략 핵심소재 자립화 기술개발 사업(20010150)으로 수행되었습니다.

References

  1. P. Hartmann, R. Jedamzik, S. Reichel and B. Schreder, "Optical glass and glass ceramic historical aspects and recent developments: a schott view", Appl. Opt. 49 (2010) 16. 
  2. G.M.V. Greco and F. Quercioli, "Telescopes of galilei", Appl. Opt. 32 (1993) 157. 
  3. X.H. Zhang, B. Bureau, P. Lucas, C.B. Pledel and J. Lucas, "Glasses for seeing beyond visible", J. Chem. Eur. 14 (2008) 432. 
  4. Y. Satoshi, A. Sohei, M. Jun and S. Naohiro, "Indentation behavior of zinc tellurite glasses by using a knoop indenter", J. Ceram. Soc. Jpn. 109 (2001) 753. 
  5. M. Micoulaut, L. Cormier and G.S. Henderson, "The structure of amorphous, crystalline and liquid GeO2", J. Phys.: Condens. Matter. 18 (2006) 753. 
  6. W.H. Dumbaugh, "Lead bismuthate glasses", Phys. Chem. Glasses. 19 (1978) 111. 
  7. K. Keiji, "Development of infrared transmitting glasses", J. Non-cryst. Solids. 316 (2003) 403. 
  8. J. Huddleston, J. Novak, W.V. Moreshead and A. Symmons, "Investigation of As40Se60 chalcogenide glass in precision glass molding for high-volume thermal imaging lenses", Proc. SPIE. 9541 (2015) 945110. 
  9. J.M. Florence, F.W. Glaze and M.H. Black, "Infrared transmittance of some calcium aluminate and germanate glasses", J. Res. Natl. Bur. Stand. 55 (1955) 2625. 
  10. W.H Dumbaugh, "Lead bismuthate glasses", Phys. Chem. Glasses. 19 (1978) 111. 
  11. P.L. Higby and I.D. Aggarwal, "Properties of barium gallium germanate glasses", J. Non-cryst. Solids. 163 (1993) 303. 
  12. C. Jaeyeop, W. Yasuhiro, Y. Yutaka, N. Yuko and I. Hiroyuki "Novel Gallate based oxide and oxyfluoride glasses with wide transparency, high refractive indices and low dispersions", J. Am. Ceram. Soc. 103 (2020) 167. 
  13. T. Mito, S. Fujino, H. Takabe and K. Morinaga, "Effect of high valency cations on high refractive-index and low dispersion characteristics of borate glasses", J. Ceram. Soc. Jpn. 102 (1994) 1163. 
  14. S. Hirota and T. Izumitani, "Effect of cations on the inherent absorption wavelength and the oscillator strength of ultraviolet absorptions in Borate Glasses", J. Non-Cryst. Sol. 29 (1978) 109.