Browse > Article
http://dx.doi.org/10.6117/kmeps.2021.28.4.011

Fabrication of a Novel Ultra Low Temperature Co-fired Ceramic (ULTCC) Using BaV2O6 and BaWO4  

Kim, Duwon (Department of Display and Materials Engineering, Soonchunhyang University)
Lee, Kyoungho (Department of Display and Materials Engineering, Soonchunhyang University)
Publication Information
Journal of the Microelectronics and Packaging Society / v.28, no.4, 2021 , pp. 11-18 More about this Journal
Abstract
A novel microwave dielectric composite material for ultra-low temperature co-fired ceramics (ULTCC) with (1-x)BaWO4-xBaV2O6 (x=0.54~0.85) composition was prepared by firing a mixture of BaWO4 and BaV2O6. Shrinkage tests showed that the ceramic composite begins to densify at a temperature as low as 550℃ and can be sintered at 650℃ with 98% of relative density under the influence of BaV2O6. X-ray diffraction analysis showed that BaWO4 and BaV2O6 coexisted and no secondary phase was detected in the sintered bodies, implying good chemical compatibility between the two phases. Near-zero temperature coefficients of the resonant frequency (𝛕f) could be achieved by controlling the relative content of the two phases, due to their positive and negative 𝛕f values, respectively. With increasing BaV2O6 (x from 0.53 to 0.85), the 𝛕f value of the composites increased from -7.54 to 14.49 ppm/℃, εr increased from 10.08 to 11.17 and the quality factor (Q×f value) decreased from 47,661 to 37,131 GHz. The best microwave dielectric properties were obtained for x=0.6 samples with εr=10.4, Q×f=44,090 GHz, and 𝛕f=-2.38 ppm/℃. Chemical compatibility experiments showed the developed composites are compatible with aluminum electrode during co-firing process.
Keywords
ULTCC; 5G communications; $BaWO_4-BaV_2O_6$ composites; Microwave dielectric properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. W. Hakki and P. D. Coleman, "A Dielectric Resonator Method of Measuring Inductive Capacities in the Milimeter Range", IRE Trans. Microwave Theory Tech., MTT-8(4), 402 (1960).
2 J. X. Tong, J. H. Zhou, H. Yang, Q. L. Zhang, W. Huang, and Y. You, "Low Temperature Sintering of Li2(Mg0.3Zn0.7)Ti3O8-0.12TiO2 Microwave Dielectric Ceramics with Controllable Grain Size", J. Mater. Sci., Mater. Electron. 25(3), 1293 (2014).
3 H. Zhuang, Z. Yue, F. Zhao, and L. Li, "Low-Temperature Sintering and Microwave Dielectric Properties of Ba5Nb4O15-BaWO4 Composite Ceramics for LTCC Applications", J. Am. Ceram. Soc., 91(10), 3275 (2008).   DOI
4 D. W. Kim, K. S. Hong, C. S. Yoon, and C. K. Kim, "Low-Temperature Sintering and Microwave Dielectric Properties of Ba5M4O15-BaNb2O6 Mixtures for LTCC Applications," J. Eur. Ceram. Soc., 23(14), 2597 (2003).   DOI
5 K. H. Yoon, D. P. Kim, and E. S. Kim, "Effect of BaWO4 on the Microwave Dielectric Properties of Ba(Mg1/3Ta2/3)O3 Ceramics", J. Am. Ceram. Soc., 77(4), 1062, (2005).   DOI
6 T. Yao, Y. Oka, N. Yamamoto, "Structure Refinement of Barium Metavanadate BaV2O6", Inorg. Chim. Acta, 238(1-2), 165 (1995).   DOI
7 W. E. Courtney, "Analysis and Evaluation of a Method of Measuring the Complex Permittivity and Permeability of Microwave Insulators", IEEE Trans. Microwave Theory Tech., MMT-18(8), 476 (1970).
8 A. J. Bosman, and E. E. Havinga, "Temperature Dependence of Dielectric Constants of Cubic Ionic Compounds", Phys. Rev., 129(4), 1593 (1963).   DOI
9 L. L. Y. Chang, M. G. Scroger, and B. Phillips, "Alkaline-Earth Tungstates: Equilibrium and Stability in the M-W-O Systems", J. Am. Ceram. Soc., 49(7), 3850 (1966).
10 S. J. Penn, N. M. Alford, A. Templeton, X. Wang, M. Xu, M. Reece, and K. Schrapel, "Effect of Porosity and Grain Size on the Microwave Dielectric Properties of Sintered Alumina", J. Am. Ceram. Soc., 80(7), 1885 (1997).   DOI
11 D. Zhou, L. X. Pang, J. Guo, Z. M. Qi, T. Shao, Q. P. Wang, H. D. Xie, X. Yao and C. A. Randall, "Influence of Ce Substitution for Bi in BiVO4 and the Impact on the Phase Evolution and Microwave Dielectric Properties", Inorg. Chem. 53(2), 1048 (2014).   DOI
12 H. Tamura, "Microwave Loss Quality of (Zr0.8Sn0.2)TiO4", Am. Ceram. Soc. Bull., 73, 92 (1994).
13 A. E. Paladino, "Temperature-Compensated MgTi2O5-TiO2 Dielectrics", J. Am. Ceram. Soc., 54(3), 168 (1971).   DOI
14 J. T. Kloprogge, M. L. Weier, L. V. Duong, and R. L. Frost, "Microwave Assisted Synthesis and Characterization of Divalent Metal Tungstate Nanocrystalline Minerals", Mater. Chem. Phys., 88(2-3), 438 (2004).   DOI
15 A. N. Unnimaya, E. K. Suresh, and R. Ravendran, "Structure and Microwave Dielectric Properties of Ultralow-Temperature Cofirable BaV2O6 Ceramics", Eur. J. Inorg. Chem., 2015(2), 194 (2015).   DOI
16 C. Tian, Z. Yue, and Y. Zhou, "Microstructures and Microwave Dielectric Properties of Ba4LiNb3O12-BaWO4 Composite Ceramics", Mat. Sci. Eng. B, 178(2), 178 (2013).   DOI
17 G. N. Howatt, R. G. Breckenridge, and J. M. Brownlow, "Fabrication of Thin Ceramic Sheets for Capacitors", J. Am Ceram. Soc., 30(8), 237 (1947).   DOI
18 G. Wang, D. N. Zhang, F. Xu, X. Huang, Y. Yang, G. W. Gan, Y. M. Lai, Y. H. Rao, C. Liu, J. Li, L. C. Jin, and H. W. Zhang, "Correlation Between Crystal Structure and Modified Microwave Dielectric Characteristics of Cu2+ Substituted Li3Mg2NbO6 Ceramics", Ceram. Int. 45(8) 10170, (2019).   DOI
19 H. Zhuang, Z. Yue, S. Meng, F. Zhao, and L. Li, "Low-Temperature Sintering and Microwave Dielectric Properties of Ba3(VO4)2-BaWO4 Ceramic Composites", J. Am. Ceram. Soc., 91(11), 3738, (2008).   DOI
20 M. T. Sebastian, and H. Jantunen, "Low Loss Dielectric Materials for LTCC Applications: A Review", Int. Mater. Rev, 53(2), 57 (2008).   DOI
21 M. T. Sebastian, R. Ubic, and H. Jantunen, Microwave Materials and Applications, John Wiley & Sons, New York (2017).
22 X. Q. Song, K. Du, J. Li, R. Muhammad, W. Z. Lu, X. C. Wang, and W. Lei, "Crystal Structures and Microwave Dielectric Properties of Novel Low-Permittivity Ba1-xSrxZn-Si3O8 ceramics", Mater. Res. Bull. 112, 178 (2019).   DOI
23 W. Zhen, S. Li, and B. Jianjiang, "Low Temperature Sintering and Microwave Dielectric Properties of Li2TiO3-Li2WO4 Composite Ceramics", Ceram. Int., 39(8), 9767 (2013).   DOI
24 D. Zhou, D. Guo, W. B. Li, L. X. Pang, X. Yao, D. W. Wang and I. M. Reaney, "Novel Temperature Stable High-εr Microwave Dielectrics in the Bi2O3-TiO2-V2O5 system", J. Mater. Chem. C, 4(23), 5357 (2016).   DOI
25 A. Bailey, W. Foley, M. Hageman, C. Murray, A. Piloto, K. Sparks, and K. Zaki, "Miniature LTCC Filters for Digital Receivers", IEEE MTT-S International Microwave Symposium Digest, 2, 999 (1997).
26 A. Osseiran, F. Boccardi, V. Braun, K. Kusume, P. Marsch, M. Maternia, O. Queseth, M. Schellmann, H. Schotten, H. Taoka, H. Tullberg, M.A. Uusitalo, B. Timus, and M. Fallgren, "Scenarios for 5G Mobile and Wireless communications: the Vision of the METIS Project", IEEE Commun. Mag. 52(5), 26 (2014).   DOI
27 D. Zhou, H. Wang, L. X. Pang, X. Yao, and X. G. Wu, "Microwave Dielectric Characterization of a Li3NbO4 Ceramic and Its Chemical Compatibility with Silver", J. Am. Ceram. Soc. 91(12), 4115 (2008).   DOI
28 M. T. Sebastian, H. Wang, and H. Jantunen, "Low temperature Co-fired Ceramics with Ultra-low Sintering Temperature: a Review", Curr. Opin. Solid State Mater. Sci., 20(3), 15 (2016).
29 C. J. Pei, G. G. Yao, and Z. Y. Ren, "Microwave Dielectric Properties of BaV2O6 Ceramics with Ultra-Low Sintering Temperature", J. Ceram. Process. Res., 17(7), 681 (2016).   DOI
30 S. H. Yoon, D. W. Kim, S. Y. Cho, K. S. Hong, "Investigation of the Relations between Structure and Microwave Dielectric Properties of Divalent Metal Tungstate Compounds", J. Eur. Ceram. Soc., 26(10-11), 2051 (2006).   DOI
31 M. Takata, and K. Kageyama, "Microwave Characteristics of A(B3+1/2B5+1/2)O3 Ceramics (A = Ba, Ca, Sr; B3+= La, Nd, Sm, Yb; B5+= Nb, Ta)", J. Am. Ceram. Soc., 72(10), 1955 (1989).   DOI