Browse > Article
http://dx.doi.org/10.5322/JESI.2022.31.8.677

Application of Photocatalytic Degradation for Efficient Treatment of Organic Matter in Landfill Leachate in Jeju Island  

Lee, Chang-Han (Department of Environmental Administration, Catholic University of Pusan)
Lee, Taek-Kwan (Hanpoong Construction Co. Ltd.)
Cho, Eun-Il (Department of Environmental Engineering, Jeju National University)
Kam, Sang-Kyu (Department of Environmental Engineering, Jeju National University)
Publication Information
Journal of Environmental Science International / v.31, no.8, 2022 , pp. 677-689 More about this Journal
Abstract
In order to photocatalytically treat organic matter (CODCr) and chromaticity effectively, chemical coagulation and sedimentation processes were employed as a pretreatment of the leachate produced from landfill in Jeju Island. This was performed using FeCl3·6H2O as a coagulant. For the treated leachate, UV/TiO2 and UV/TiO2/H2O2 systems were investigated, using 4 types of UV lamps, including an ozone lamp (24 W), TiO2 as a photocatalyst, and/or H2O2 as an initiator or inhibitor for photocatalytic degradation. In the chemical coagulation and sedimentation process using FeCl3·6H2O, optimum removal was achieved with an initial pH of 6, and a coagulant dosage of 2.0 g/L, culminating in the removal of 40% CODCr and 81% chromaticity. For the UV/TiO2 system utilizing an ozone lamp and 3 g/L of TiO2, the optimum condition was obtained at pH 5. However, the treated CODCr and chromaticity did not meet the emission standards (CODCr: 400 mg/L, chromaticity: 200 degrees) in a clean area. However, for a UV/TiO2/H2O2 system using 1.54 g/L of H2O2 in addition to the above optimum UV/TiO2 system, the results were 395 mg/L and 160 degrees, respectively, which were within the emission standard limits. The effect of the UV lamp on the removal of CODCr, and chromaticity of the leachate decreased in the order of ozone (24 W) lamp > 254 nm (24 W) lamp > ozone (14 W) lamp > 254 nm (14 W) lamp. Only CODCr and chromaticity treated with the ozone (24 W) lamp met the emission standards.
Keywords
Photocatalytic degradation; Landfill leachate; $COD_{Cr}$; Chromaticity; Chemical coagulation and sedimentation; UV/$TiO_2$ system; UV/$TiO_2$/$H_2O_2$ system;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ward, M. J., Bitton, G., Townsend, T. G., Booth, M., 2002, Determining toxicity of leachates from Florida municipal solid waste landfills using a battery of tests approach, Environ. Toxicol., 17, 258-266.   DOI
2 Li, D., Zhu, Q., Han, C., Yang, Y., Jiang, W., Zhang, Z., 2015, Photocatalytic degradation of recalcitrant organic pollutants in water using a novel cylindrical multi-column photoreactor packed with TiO2-coated silica gel beads, J. Hazard. Mater., 285, 398-408.   DOI
3 Meeroff, D. E., Bloetscher, F., Reddy, D. V., Gasnier, F., Jain, S., McBarnette, A., Hamaguchi, H., 2012, Application of photochemical technologies for treatment of landfill leachate, J. Hazard. Mater., 209-210, 299-307.   DOI
4 Moon, J. U., Kim, S. J., Park, Y. K., 1998, Application of photocatalytic reaction system for independent treatment of Nanjido landfill leachate, J. Korean Soc. Environ. Eng., 20(12), 1791-1801.
5 Salem, Z., Hamouri, K., Djemaa, R., Allia, K., 2008, Evaluation of landfill leachate pollution and treatment, Desal;ination, 220, 108-114.   DOI
6 Anirudhan, T. S., Deepa, J. R., Anoop, S., 2017, Fabrication of chemically modified graphene oxide/nanohydroxyapatite composite for adsorption and subsequent photocatalytic degradation of aureomycin hydrochloride, Nair. J. Ind. Eng. Chem., 47, 415-430.   DOI
7 Bekbolet, M., Lindner, M., Weichgrebe, D., Bahnemann, D. W., 1996, Photocatalytic detoxication with the thin-film fixed-bed reactor (TFFBR): clean-up highly polluted landfill effluents using a novel TiO2-photocatalyst, Solar Energy, 56, 455-469.   DOI
8 Li, Y. J., Zhou, X. M., Chen, W., Li, L. Y., Zen, M. X., Qin, S. D., Sun, S. G., 2012, Photodecolorization of Rhodamine B on tungsten-doped TiO2/activated carbon under visible-light irradiation, J. Hazard. Mater., 227, 25-33.
9 Kiriakidou, F., Kondarides, D. I., Verykios, X. E., 1999, The effect of operational parameters and TiO2-doping on the photocatalytic degradation of azo-dye, Caral. Today, 54, 119-130.   DOI
10 Fan, L., Zhang, H., Chang, C. H., Lee, D. J., He, P. J., Shao, L. M., Su, A., 2008, Dissolved organic matter and estrogenic potential of landfill keachate, Chemosphere, 72, 1381-1386.   DOI
11 Cho, S. P., Hong, S. C., Hong, S. I., 2002, Photocatalytic degradation of the landfill leachate containing refractory matters and nitrogen compounds, Appl. Catal. B: Environ., 39, 125-133.   DOI
12 Bahnemann, D., Cunningham, J., Fox, M. A., Pelizzetti, E., Pichat, P., Serpone, M., 1994, Photocatalytic treatment of waters, in: Helz, G. R., Zepp, R. G., Crosby, D. G. (eds.), Aquatic and Surface Photochemistry, Lewis, Boca Raton, Fla, 261-316.
13 Behnajady, M. A., Modirshahia, N., Daneshvar, N., Rabbani, M., 2007, Photocatalytic degradation of an azo dye in a tubular continuous-flow photoreactor with immobilized TiO2 on glass plates, Chem. Eng. J., 127, 167-176.   DOI
14 Burns, R. A., Crittenden, J. C., Hand, D. W., Selzer, V. H., Sutter, L. L., Salman, S. R., 1999, Effect of inorganic ions in heterogeneous photocatalysis on TCE. J. Environ. Eng., 125, 77-85.   DOI
15 Kam, S. K., Gregory, J., 2001, The interaction of humic substances with cationic polyelectrolytes, Water Res., 35, 3557-3566.   DOI
16 Kang, J. W., Park, H. S., Choi, K. H., 1995, Photocatalytic degradation of organic pollutants over a TiO2 semiconductor, J. Korean Soc. Environ. Eng., 17, 283-294.
17 Kim, J. Y., 2002, Photodegradation of pyrene, chrysene and benzo[a]pyrene in water, MS Thesis, Jeju National University, 1-48.
18 Kim, S. S., 2003, Characteristics of degradation of MTBE using TiO2/UV process in water, MS Thesis, Jeju National University, 1-47.
19 Akesson, M., Nilsson, P., 1997, Seasonal changes of leachate production and quality from test cells, J. Environ. Eng., 123, 892-900.   DOI
20 Ku, Y., Leu, R. M., Lee, K. C., 1996, Decomposition of 2-chlorophenol in aqueous solution by UV irradiation with the presence of titanium dioxide, Water Res., 30, 2569-2578.   DOI
21 Mattews, R. W., Mahlman, H. A., SworsKi, T. J., 1972, Elementary processes in the radiolysis of aqueous sulfuric acid solutions. Determination of both GOH and GSO4・, J. Phys. Chem., 76(9), 1265-1272.   DOI
22 Kwak, 2000, Physical and Chemical Principle and Practice of Water Treatment, Jisem, Seoul, 146-151.
23 Lee, M. J., 2021, Degradation characteristics of enrofloxacin using TiO2 photocatalytic process, MS Thesis, Jeju National University, 1-62.
24 Lei, Y., Shen, Z., Huang, R., Wang, W., 2007, Treatment of landfill leachate by combined aged-refuse bioreactor and electro-oxidation, Water Res., 41, 2417-2426.   DOI
25 Paik, B. C., Kam, S. K., 2021, Detection characteristics of perfluorinated compounds in landfill leachates of Jeju Island, J. Environ. Sci. Int., 30, 597-604.   DOI
26 Sanyo UV, 2021, http://www.sanyo-uv.com.
27 Seo, Y. W., Kim, H. S., Shin, H. O., Sung, J. Y., 2002, Removal characteristics of organics in landfill leachate by H2O2/UV/TiO2 system, J. Korean Soc. Civil Eng. B, 22(1), 101-108.
28 Wang, X. D., Shi, F., Huang, W., Fan, C. M., 2012, Synthesis of high quality TiO2 membranes on alumina supports and their photocatalytic activity, Thin Solid Films, 520, 2488-2492.   DOI
29 Kjeldsen, P., Barlaz, M. A., Rooker, A. P., Baun, A., Ledin, A., Christensen, T. H., 2002, Present and longterm composition of MSW landfill leachate: a review, Cri. Rev. Environ. Sci. Technol., 32, 297-336.   DOI
30 Mattews, R. W., 1984, Hydroxylation reactions induced by near-ultraviolet photolysis of aqueous titanium dioxide suspensions, J. Chem. Soc. Faraday Trans. 1, 80, 457-471   DOI
31 Shin, H. O., Seo, Y. W., Kim, H. S., Jo, J. H., Sung, J. Y., Hwang, S. J., 2000, A Study on treatment of leachate from Kimpo landfill by H2O2/UV/TiO2 system, J. Korean Solid Wastes Eng. Soc., 17(7), 875-882.