• 제목/요약/키워드: As₄O/sub 6/

검색결과 1,793건 처리시간 0.031초

(Pb0.72La0.28)Ti0.94O3 Buffer를 사용한 Pb(Zr0.52Ti0.48)O3 박막의 수소 후열처리 효과 (Effect of the Hydrogen Annealing on the Pb(Zr0.52Ti0.48)O3 Film using (Pb0.72La0.28)Ti0.94O3 Buffers)

  • 이은선;이동화;정현우;임성훈;이상렬
    • 한국전기전자재료학회논문지
    • /
    • 제18권4호
    • /
    • pp.327-329
    • /
    • 2005
  • Pb(Zr/sub 0.52/Ti/sub 0.48/)O₃(PZT) thin films were deposited by using a pulsed laser deposition method on a Pt/Ti/SiO₂/Si substrate with (Pb/sub 0.72/La/sub 0.28/)Ti/sub 0.93/O₃ (PLT) buffer and on a Pt/Ti/SiO₂/Si substrate without buffer. These films were annealed in H₂-contained ambient for 30 minutes at the substrate temperature of 400。C to evaluate the forming gas annealing effects. The comparative studies on the ferroelectric properties of these two films were carried out, which are shown that ferroelectric properties, such as remanent polarization didn't change in the case of PLT buffered PZT film while remanent polarization value of PZT film degraded from 20.8 C/㎠ to 7.3 C/㎠. The leakage current became higher in both cases, but that of the more-oriented PZT film had the moderate value of the 10/sup -6/ order of A/㎠. This is mainly because the hydrogen atoms which make the degradation of PZT films cannot infiltrate into the more -oriented PZT film as well as the less-oriented PZT film.

Metal-organic frameworks-driven ZnO-functionalized carbon nanotube fiber for NO2 sensor

  • Woo, Sungyoon;Jo, Mingyeong;Lee, Joon-Seok;Choi, Seung-Ho;Lee, Sungju;Jeong, Hyeon Su;Choi, Seon-Jin
    • 센서학회지
    • /
    • 제30권6호
    • /
    • pp.369-375
    • /
    • 2021
  • In this study, heterogeneous ZnO/CNTF composites were developed to improve the NO2-sensing response, facilitated by the self-heating property. Highly conductive and mechanically stable CNTFs were prepared by a wet-spinning process assisted by the liquid crystal (LC) behavior of CNTs. Metal-organic frameworks (MOFs) of ZIF-8 were precipitated on the surface of the CNTF (ZIF-8/CNTF) via one-pot synthesis in solution. The subsequent calcination process resulted in the formation of the ZnO/CNTF composites. The calcination temperatures were controlled at 400, 500, and 600 ℃ in an N2 atmosphere to confirm the evolution of the microstructures and NO2-sensing properties. Gas sensor characterization was performed at 100 ℃ by applying a DC voltage to induce Joule heating through the CNTF. The results revealed that the ZnO/CNTF composite after calcination at 500 ℃ (ZnO/CNTF-500) exhibited an improved response (Rair/Rgas = 1.086) toward 20 ppm NO2 as compared to the pristine CNTF (Rair/Rgas = 1.063). Selective NO2-sensing properties were demonstrated with negligible responses toward interfering gas species such as H2S, NH3, CO, and toluene. Our approach for the synthesis of MOF-driven ZnO/CNTF composites can provide a new strategy for the fabrication of wearable gas sensors integrated with textile materials.

수열합성법을 이용한 Flower-Like 형상의 Al2O3 Nanostructure 제조 및 BN/Al2O3 복합체의 방열 특성 연구 (Preparation of Flower-Like Al2O3 Nanostructures by Hydrothermal Synthesis and Study of Thermal Properties of BN/Al2O3 Composites)

  • 송노건;정용진
    • 한국전기전자재료학회논문지
    • /
    • 제36권6호
    • /
    • pp.633-637
    • /
    • 2023
  • Recently, with the development of the smart device market, the integration of high-functional devices has increased the heat density, causing overload of the device, and resulting in various problems such as shortened lifespan, performance degradation, and failure. Therefore, research on heat dissipation materials is being actively conducted to realize next-generation electronic products. The heat dissipation material is characterized in that it is easy to dissipate heat due to its high thermal conductivity and minimizes leakage current flowing through the heat dissipation material due to its low electrical conductivity. In this study, flower-shaped Al2O3 and BN composites were engineered with a simple hydrothermal synthesis approach, and their thermal conductivity characteristics were compared and evaluated for each synthesis condition for the application to a heat dissipation material. Spherical BN and flower-shaped Al2O3 were easily obtained, and SEM/EDS analyses confirmed the uniform presence of BN between the Al2O3, and it can be expected that these shapes can affect the thermal conductivity.

(Cr, Fe)-doped Y2O3-Al2O3계 붉은 안료의 합성과 특성 (Synthesis and Characterization of (Cr, Fe)-doped Y2O3-Al2O3 Red Pigments)

  • 신경현;이병하
    • 한국세라믹학회지
    • /
    • 제46권4호
    • /
    • pp.350-356
    • /
    • 2009
  • Perovskite codoped with chromium and iron have been studied. Samples with $YAl_{0.96}(Cr_{0.04-x}Fe_x)O_3$(x=0.01, 0.02, 0.03, 0.04) were prepared by solid state reaction at $1450^{\circ}C$ for 6 h and were characterized by XRD, FT-IR, Raman spectroscopy, SEM and UV-vis spectrophotometer. The color of the synthesized pigments were from red to dark brown(in bulk). Up to 0.02 mole $Fe_2O_3$ for substituting $Cr_2O_3$ development of color in lime-glaze gives good red color but as increasing amount of $Fe_2O_3$ and decreasing $Cr_2O_3$ proportionally produce from brownish red to brown. Increasing $Fe_2O_3$ amount lead to weaken crystal field relatively due to have smaller ionic radius than $Cr_2O_3$ ionic one. The UV-vis peaks were shifted to lower wavelength.

소석회, 포틀랜드 시멘트, FeCl3·6H2O, NaOH를 이용한 비소 오염토양의 안정화 (Stabilization of As Contaminated Soils using a Combination of Hydrated Lime, Portland Cement, FeCl3·6H2O and NaOH)

  • 문덕현;오다연;이승제;박정훈
    • 한국환경농학회지
    • /
    • 제29권1호
    • /
    • pp.47-53
    • /
    • 2010
  • 본 연구에서 비소로 오염된 토양에 함유된 비소를 안정화시키기 위하여 4종류의 안정화제를 이용 처리하여 다음과 같은 결론을 얻었다. 안정화 처리에 사용된 오염토는 약알칼리성을 띄고 있으며, 입도분포 결과 사토계열이였고 57.5%의 비소가 무정형 및 비결정형 철/알루미늄 수산화물형태로 존재했다. 안정화 실험 결과 소석회/포틀랜드시멘트 혼합 안정화처리가 모든 안정화 처리와 비교 했을 때 현저한 우의를 보였으며 총 함량 30%로 토양오염 우려기준 20 mg/kg('나'지역)을 통과 하였다. 소석회/$FeCl_3{\cdot}6H_2O$ 혼합 이용시 효율적인 비소 저감효과룹 기대할 수 없었으며 소석회/NaOH는 효과적이었으나 소석회/포틀랜드시멘트 보다는 효율성이 제한적 이였다. 소석회/포틀랜드시멘트 혼합 안정화 처리 후 연속추출결과는 처리 전 오염토와 비교했을 때 특이적 흡착과 잔류대의 증가를 보였다. 특히 25wt%+10wt% 처리 시료에서 잔류태의 증가는 2배가 넘어 (16%에서 35.7%) 매우 안정적인 비소 존재 형태를 보여 비소 용출농도 저감에 현저하게 기여한 것으로 판단된다.

에어로졸 공정을 이용한 오산화바나듐(V2O5)-그래핀 복합체 제조 및 슈퍼커패시터 응용 (Preparation of V2O5-Graphene Composites using Aerosol Process for Supercapacitors Application)

  • 이총민;장희동
    • 한국입자에어로졸학회지
    • /
    • 제16권4호
    • /
    • pp.95-105
    • /
    • 2020
  • Vanadium Pentoxide (V2O5) has been emerged as alternative electrode materials for supercapacitors due to their low cost, natural abundance, and environmental friendliness. Graphene (GR) loaded with V2O5 can exhibit enhanced specific capacitance. In this study, we present three-dimensional (3D) crumpled graphene (CGR) decorated with V2O5. The V2O5-graphene composites were synthesized from a colloidal mixture of graphene oxide (GO) and Ammonium metavanadate (NH4VO3), via aerosol spray drying and post heat treatment process. The average size of composite was ranged from 1.82 to 4.6 ㎛. Morphology of the composite changed from a crumpled paper ball to spherical ball having relatively smooth surface as the content of V2O5 increased in the composites. The electrochemical performance of the V2O5-graphene composites was examined. The V2O5-graphene composite electrode showed the specific capacitance of 312 F/g. In addition, the device possessed acceptable cyclic stability, with 84% after 2000 cycles at 2 A/g. These outstanding properties are expected to make the composites prepared in this study as promising electrode materials for supercapacitor applications.

BaTiO3 PTC 써미스터의 미세구조 및 전기적 특성에 대한 SiO2 영향 (The Effect of SiO2 on the Microstructure and Electrical Properties of BaTiO3 PTC Thermistor)

  • 전명표
    • 한국전기전자재료학회논문지
    • /
    • 제26권1호
    • /
    • pp.22-26
    • /
    • 2013
  • PTCR ceramics of $(Ba_{0.998}Sm_{0.002})TiO_3+0.001MnCO_3+xSiO_2$ (x=1, 2, 3, 4, 5, 6 mol%) were fabricated by solid state method. Disk samples of diameter 5 mm and thickness about 1mm were sintered at $1,290^{\circ}C$ for 2 h in reduced atmosphere of $5%H_2-95%N_2$ followed by re-oxidation at $600^{\circ}C$ for 30 min. in $20%O_2-80%N_2$.and their microstructures and electrical properties were investigated with SEM and Multimeter. The color of sintered samples was strongly dependent on $SiO_2$ content showing that the color of samples with $SiO_2$ of 1~2 mol% was gray but that of samples with $SiO_2$ of 4~6 mol% was changed from gray to blue, which seems to be related with the reduction of samples due to the oxygen vacancies created during the sintering in reduced atmosphere. $SiO_2$ content had a great influence on the microstructure and the electrical properties. With increasing $SiO_2$ content, the grain size of samples increased and the resistivity as well as the resistivity jump ($R_{285}/R_{min}$) decreased, which is considered to be attributed to the resistivity change at grain interior and grain boundary due to the fast mass transfer through $SiO_2$ liquide phase during the sintering. Samples with 2 mol% $SiO_2$ has the resistivity of $202{\Omega}cm$ and the resistivity jump of 3.28. It is expected that $SiO_2$ doped $BaTiO_3$ based PTC ceramics can be used for multilayered PTC thermistor due to the resistance to the sintering in reduced atmosphere.

ZnO 기반 NO2 가스센서의 MgZnO와 MgO을 통한 성능 향상에 대한 연구 (Study on the Performance Improvement of ZnO-based NO2 Gas Sensor through MgZnO and MgO)

  • 박소영;이세형;박찬영;백동기;이문석
    • 센서학회지
    • /
    • 제31권6호
    • /
    • pp.455-460
    • /
    • 2022
  • Brush-like ZnO hierarchical nanostructures decorated with MgxZn1-xO (x = 0.1, 0.2, 0.3, 0.4, and 0.5) were fabricated and examined for application to a gas sensor. They were synthesized using vapor phase growth (VPG) on indium tin oxide (ITO) substrates. To generate electronic accumulation at ZnO surface, MgZnO nanoparticles were prepared by sol-gel method, and the ratio of Mg and Zn was adjusted to optimize the device for NO2 gas detection. As the electrons in the accumulation layer generated by the heterojunction reacted faster and more frequently with the gas, the sensitivity and speed improved. When tested as sensing materials for gas sensors at 100 ppm NO2 at 300℃, these MgZnO decorated ZnO nanostructures exhibited an improvement from 165 to 514 times compared to pristine ZnO. The response and recovery time of the MgZnO decorated ZnO samples were shorter than those of the pristine ZnO. Various analyzing techniques, including field-emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray powder diffraction (XRD) were employed to confirm the growth morphology, atomic composition, and crystalline information of the samples, respectively.

A Highly Efficient and Fast Method for the Synthesis of Biscoumarins Using Tetrabutylammonium Hexatungstate [TBA]2[W6O19] as Green and Reusable Heterogeneous Catalyst

  • Davoodnia, Abolghasem
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권12호
    • /
    • pp.4286-4290
    • /
    • 2011
  • A novel catalytic synthesis of biscoumarins from 4-hydroxycoumarin and aromatic aldehydes has been developed. The reaction occurs in ethanol in the presence of tetrabutylammonium hexatungstate $[TBA]_2[W_6O_{19}]$ as catalyst to give the corresponding products in high yields. This new approach has short reaction times, clean reaction profiles, and simple experimental and workup procedures. Moreover, the catalyst can be easily recovered by filtration and used at least three times with only slight reduction in its catalytic activity.

A Fast, Highly Efficient and Green Protocol for One-Pot Synthesis of 2,4,5-Trisubstituted Imidazoles Catalyzed by [TBA]2[W6O19] as a Reusable Heterogeneous Catalyst

  • Ashrafi, Mozhgan;Davoodnia, Abolghasem;Tavakoli-Hoseini, Niloofar
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권5호
    • /
    • pp.1508-1512
    • /
    • 2013
  • A simple and efficient synthesis of 2,4,5-trisubstituted imidazoles was achieved via a one-pot three-component cyclocondensation of benzil, aromatic aldehydes, and ammonium acetate in the presence of a catalytic amount of tetrabutylammonium hexatungstate $[TBA]_2[W_6O_{19}]$ as a heterogeneous catalyst under thermal solvent-free conditions. The key features of this methodology are operational simplicity, high yields, short reaction times, and a recyclable catalyst with a very easy work up.