Acknowledgement
이 과제는 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음.
References
- S. Munirathinam, "Chapter Six - Industry 4.0: Industrial Internet of Things (IIOT)", Adv. Comput., Vol. 117, pp. 129-164, 2020. https://doi.org/10.1016/bs.adcom.2019.10.010
- I. H. Khan and M. Javaid, "Role of Internet of Things (IoT) in Adoption of Industry 4.0", J. Ind. Integr. Manag., Vol. 6, No. 2, pp. 1-19, 2021. https://doi.org/10.1142/S2424862221500019
- A. Mirzaei, S. G. Leonardi, and G. Neri, "Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review", Ceram. Int., Vol. 42, No. 14, pp. 15119-15141, 2016. https://doi.org/10.1016/j.ceramint.2016.06.145
- M. Kampa and E. Castanas, "Human health effects of air pollution", Environ. Pollut., Vol. 151, No. 2, pp. 362-367, 2008. https://doi.org/10.1016/j.envpol.2007.06.012
- A. Dey, "Semiconductor metal oxide gas sensors: A review", Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater., Vol. 229, pp. 206-217, 2018. https://doi.org/10.1016/j.mseb.2017.12.036
- N. Yamazoe, G. Sakai, and K. Shinmanoe, "Oxide semiconductor gas sensors", Catal. Surv. Asia, Vol. 7, No. 1, pp. 63-75, 2003. https://doi.org/10.1023/A:1023436725457
- Y. H. Kim, W. T. Koo, J. S. Jang, and I. D. Kim, "Review of Metal Oxide-based Formaldehyde Gas Sensor to Measure Indoor Air Quality", J. Sens. Sci. Technol., Vol. 28, No. 6, pp. 377-384, 2019. https://doi.org/10.5369/JSST.2019.28.6.377
- S. Yang, G. Lei, H. Xu, Z. Lan, Z. Wang, and H. Gu, "Metal Oxide Based Heterojunctions for Gas Sensors: A Review", Nanomater., Vol. 11, No. 4, p. 1026, 2021.
- G. Korotcenkov, V. Brinzari, I. A. Prionin, M. H. Ham, and B. K. Cho, "Metal Oxides for Application in Conductometric Gas Sensors: How to Choose?", Solid State Phenomena, Vol. 266, pp. 187-195, 2017. https://doi.org/10.4028/www.scientific.net/SSP.266.187
- H. J. Kim and J. H. Lee, "Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview", Sens. Actuator B-Chem., Vol. 192, pp. 607-627, 2014. https://doi.org/10.1016/j.snb.2013.11.005
- V. Kobrinsky, A. Rothschild, V. Lumelsky, Y. Komem, and Y. Lifshitz, "Tailoring the gas sensing properties of ZnO thin films through oxygen nonstoichiometry", Appl. Phys. Lett., Vol. 93, No. 11, p. 113502, 2008.
- D. R. Miller, S. A. Akbar, and P. A. Morris, "Nanoscale metal oxide-based heterojunctions for gas sensing: A review", Sens. Actuator B-Chem., Vol. 204, pp. 250-272, 2014. https://doi.org/10.1016/j.snb.2014.07.074
- L. Wang, Y. Kang, X. Liu, S. Zhang, W. Huang, and S. Wang, "ZnO nanorod gas sensor for ethanol detection", Sens. Actuator B-Chem., Vol. 162, No. 1, pp. 237-243, 2012. https://doi.org/10.1016/j.snb.2011.12.073
- N. Yamazoe, "Toward innovations of gas sensor technology", Sens. Actuator B-Chem., Vol. 108, No. 1-2, pp. 2-14, 2005. https://doi.org/10.1016/j.snb.2004.12.075
- H. R. Kim, K. I. Choi, J. H. Lee, and S. A. Akbar, "Highly sensitive and ultra-fast responding gas sensors using selfassembled hierarchical SnO2 spheres", Sens. Actuator BChem., Vol. 136, No. 1, pp. 138-143, 2009. https://doi.org/10.1016/j.snb.2008.11.016
- A. Z. Sadek, S. Choopun, W. Wlodarski, S. J. Ippolito, and K. Kalantar-zadeh, "Characterization of ZnO NanobeltBased Gas Sensor for H2, NO2, and Hydrocarbon Sensing", IEEE Sens. J., Vol. 7, No. 6, pp. 919-924, 2007. https://doi.org/10.1109/JSEN.2007.895963
- G. Zhu, C. Xi, H. Xu, D. Zheng, Y. Liu, X. Xu, and X. Shen, "Hierarchical NiO hollow microspheres assembled from nanosheet-stacked nanoparticles and their application in a gas sensor", RSC Adv., Vol. 2, No. 10, pp. 4236-4241, 2012. https://doi.org/10.1039/c2ra01307j
- F. Liu, L. Li, F. Mo, J. Chen, S. Deng, and N. Xu, "A Catalyzed-Growth Route to Directly Form Micropatterned WO2 and WO3 Nanowire Arrays with Excellent Field Emission Behaviors at Low Temperature", Cryst. Growth Des., Vol. 12, No. 1, pp. 7-17, 2004.
- R. L. V. Wal, G. M. Berger, M. J. Kuils, G. W. Hunter, J. C. Xu, and L. Evans "Synthesis Methods, Microscopy Characterization and Device Integration of Nanoscale Metal Oxide Semiconductors for Gas Sensing", Sensors, Vol. 9, No. 10, pp. 7866-7902, 2009. https://doi.org/10.3390/s91007866
- D. Calestani, M. Zha, R. Mosca, A. Zappettini, M. C. Carotta, V. D. Natale, and L. Zanotti, "Growth of ZnO tetrapods for nanostructure-based gas", Sens. Actuator BChem., Vol. 144, No. 2, pp. 472-478, 2010. https://doi.org/10.1016/j.snb.2009.11.009
- S. W. Choi, A. Katoch, G. J. Sun, J. H. Kim, S. H. Kim, and S. S. Kim, "Dual Functional Sensing Mechanism in SnO2-ZnO Core-Shell Nanowires", ACS Appl. Mater. Interfaces, Vol. 6, pp. 8281-8287, 2014. https://doi.org/10.1021/am501107c
- V. Kumar, S. Sen, K. P. Muthe, N. K. Gaur, S. K. Gupta, and J. V. Yakhmi, "Copper doped SnO2 nanowires as highly sensitive H2S gas sensor", Sens. Actuator B-Chem., Vol. 138, No. 2, pp. 587-590, 2009. https://doi.org/10.1016/j.snb.2009.02.053
- D. Zappa, V. Galstyan, N. Kaur, H. M. M. M. Arachchige, O. Sisman, and E. Comini, "Metal oxide -based hetero- structures for gas sensors- A review", Anal. Chim. Acta., Vol. 1039, pp. 1-23, 2018. https://doi.org/10.1016/j.aca.2018.09.020
- H. Dislich, "Sol-gel: Science, processes and products", J. Non-Cryst. Solids, Vol. 80, No. 1-3, pp. 115-121, 1986. https://doi.org/10.1016/0022-3093(86)90384-4
-
B. Sarikavak-Lisesivdin, "Numerical optimization of twodimensional electron gas in Mgx Zn1-x O/ZnO heterostructures (0.10
https://doi.org/10.1080/14786435.2012.741728 - T. C. Zhang, Y. Guo, Z. X. Mei, C. Z. Gu, and X. L. Du, "Visible-blind ultraviolet photodetector based on double heterojunction of n-ZnO/insulator-MgO/p-Si", Appl. Phys. Lett., Vol. 94, No. 11, p. 113508, 2009.