DOI QR코드

DOI QR Code

Study on the Performance Improvement of ZnO-based NO2 Gas Sensor through MgZnO and MgO

ZnO 기반 NO2 가스센서의 MgZnO와 MgO을 통한 성능 향상에 대한 연구

  • So-Young, Bak (School of Electronics Engineering, Busan National Unversity) ;
  • Se-Hyeong, Lee (School of Electronics Engineering, Busan National Unversity) ;
  • Chan-Yeong, Park (School of Electronics Engineering, Busan National Unversity) ;
  • Dongki, Baek (School of Electronics Engineering, Busan National Unversity) ;
  • Moonsuk, Yi (School of Electronics Engineering, Busan National Unversity)
  • 박소영 (부산대학교 전기전자공학과) ;
  • 이세형 (부산대학교 전기전자공학과) ;
  • 박찬영 (부산대학교 전기전자공학과) ;
  • 백동기 (부산대학교 전기전자공학과) ;
  • 이문석 (부산대학교 전기전자공학과)
  • Received : 2022.11.14
  • Accepted : 2022.11.30
  • Published : 2022.11.30

Abstract

Brush-like ZnO hierarchical nanostructures decorated with MgxZn1-xO (x = 0.1, 0.2, 0.3, 0.4, and 0.5) were fabricated and examined for application to a gas sensor. They were synthesized using vapor phase growth (VPG) on indium tin oxide (ITO) substrates. To generate electronic accumulation at ZnO surface, MgZnO nanoparticles were prepared by sol-gel method, and the ratio of Mg and Zn was adjusted to optimize the device for NO2 gas detection. As the electrons in the accumulation layer generated by the heterojunction reacted faster and more frequently with the gas, the sensitivity and speed improved. When tested as sensing materials for gas sensors at 100 ppm NO2 at 300℃, these MgZnO decorated ZnO nanostructures exhibited an improvement from 165 to 514 times compared to pristine ZnO. The response and recovery time of the MgZnO decorated ZnO samples were shorter than those of the pristine ZnO. Various analyzing techniques, including field-emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray powder diffraction (XRD) were employed to confirm the growth morphology, atomic composition, and crystalline information of the samples, respectively.

Keywords

Acknowledgement

이 과제는 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음.

References

  1. S. Munirathinam, "Chapter Six - Industry 4.0: Industrial Internet of Things (IIOT)", Adv. Comput., Vol. 117, pp. 129-164, 2020. https://doi.org/10.1016/bs.adcom.2019.10.010
  2. I. H. Khan and M. Javaid, "Role of Internet of Things (IoT) in Adoption of Industry 4.0", J. Ind. Integr. Manag., Vol. 6, No. 2, pp. 1-19, 2021. https://doi.org/10.1142/S2424862221500019
  3. A. Mirzaei, S. G. Leonardi, and G. Neri, "Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review", Ceram. Int., Vol. 42, No. 14, pp. 15119-15141, 2016. https://doi.org/10.1016/j.ceramint.2016.06.145
  4. M. Kampa and E. Castanas, "Human health effects of air pollution", Environ. Pollut., Vol. 151, No. 2, pp. 362-367, 2008. https://doi.org/10.1016/j.envpol.2007.06.012
  5. A. Dey, "Semiconductor metal oxide gas sensors: A review", Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater., Vol. 229, pp. 206-217, 2018. https://doi.org/10.1016/j.mseb.2017.12.036
  6. N. Yamazoe, G. Sakai, and K. Shinmanoe, "Oxide semiconductor gas sensors", Catal. Surv. Asia, Vol. 7, No. 1, pp. 63-75, 2003. https://doi.org/10.1023/A:1023436725457
  7. Y. H. Kim, W. T. Koo, J. S. Jang, and I. D. Kim, "Review of Metal Oxide-based Formaldehyde Gas Sensor to Measure Indoor Air Quality", J. Sens. Sci. Technol., Vol. 28, No. 6, pp. 377-384, 2019. https://doi.org/10.5369/JSST.2019.28.6.377
  8. S. Yang, G. Lei, H. Xu, Z. Lan, Z. Wang, and H. Gu, "Metal Oxide Based Heterojunctions for Gas Sensors: A Review", Nanomater., Vol. 11, No. 4, p. 1026, 2021.
  9. G. Korotcenkov, V. Brinzari, I. A. Prionin, M. H. Ham, and B. K. Cho, "Metal Oxides for Application in Conductometric Gas Sensors: How to Choose?", Solid State Phenomena, Vol. 266, pp. 187-195, 2017. https://doi.org/10.4028/www.scientific.net/SSP.266.187
  10. H. J. Kim and J. H. Lee, "Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview", Sens. Actuator B-Chem., Vol. 192, pp. 607-627, 2014. https://doi.org/10.1016/j.snb.2013.11.005
  11. V. Kobrinsky, A. Rothschild, V. Lumelsky, Y. Komem, and Y. Lifshitz, "Tailoring the gas sensing properties of ZnO thin films through oxygen nonstoichiometry", Appl. Phys. Lett., Vol. 93, No. 11, p. 113502, 2008.
  12. D. R. Miller, S. A. Akbar, and P. A. Morris, "Nanoscale metal oxide-based heterojunctions for gas sensing: A review", Sens. Actuator B-Chem., Vol. 204, pp. 250-272, 2014. https://doi.org/10.1016/j.snb.2014.07.074
  13. L. Wang, Y. Kang, X. Liu, S. Zhang, W. Huang, and S. Wang, "ZnO nanorod gas sensor for ethanol detection", Sens. Actuator B-Chem., Vol. 162, No. 1, pp. 237-243, 2012. https://doi.org/10.1016/j.snb.2011.12.073
  14. N. Yamazoe, "Toward innovations of gas sensor technology", Sens. Actuator B-Chem., Vol. 108, No. 1-2, pp. 2-14, 2005. https://doi.org/10.1016/j.snb.2004.12.075
  15. H. R. Kim, K. I. Choi, J. H. Lee, and S. A. Akbar, "Highly sensitive and ultra-fast responding gas sensors using selfassembled hierarchical SnO2 spheres", Sens. Actuator BChem., Vol. 136, No. 1, pp. 138-143, 2009. https://doi.org/10.1016/j.snb.2008.11.016
  16. A. Z. Sadek, S. Choopun, W. Wlodarski, S. J. Ippolito, and K. Kalantar-zadeh, "Characterization of ZnO NanobeltBased Gas Sensor for H2, NO2, and Hydrocarbon Sensing", IEEE Sens. J., Vol. 7, No. 6, pp. 919-924, 2007. https://doi.org/10.1109/JSEN.2007.895963
  17. G. Zhu, C. Xi, H. Xu, D. Zheng, Y. Liu, X. Xu, and X. Shen, "Hierarchical NiO hollow microspheres assembled from nanosheet-stacked nanoparticles and their application in a gas sensor", RSC Adv., Vol. 2, No. 10, pp. 4236-4241, 2012. https://doi.org/10.1039/c2ra01307j
  18. F. Liu, L. Li, F. Mo, J. Chen, S. Deng, and N. Xu, "A Catalyzed-Growth Route to Directly Form Micropatterned WO2 and WO3 Nanowire Arrays with Excellent Field Emission Behaviors at Low Temperature", Cryst. Growth Des., Vol. 12, No. 1, pp. 7-17, 2004.
  19. R. L. V. Wal, G. M. Berger, M. J. Kuils, G. W. Hunter, J. C. Xu, and L. Evans "Synthesis Methods, Microscopy Characterization and Device Integration of Nanoscale Metal Oxide Semiconductors for Gas Sensing", Sensors, Vol. 9, No. 10, pp. 7866-7902, 2009. https://doi.org/10.3390/s91007866
  20. D. Calestani, M. Zha, R. Mosca, A. Zappettini, M. C. Carotta, V. D. Natale, and L. Zanotti, "Growth of ZnO tetrapods for nanostructure-based gas", Sens. Actuator BChem., Vol. 144, No. 2, pp. 472-478, 2010. https://doi.org/10.1016/j.snb.2009.11.009
  21. S. W. Choi, A. Katoch, G. J. Sun, J. H. Kim, S. H. Kim, and S. S. Kim, "Dual Functional Sensing Mechanism in SnO2-ZnO Core-Shell Nanowires", ACS Appl. Mater. Interfaces, Vol. 6, pp. 8281-8287, 2014. https://doi.org/10.1021/am501107c
  22. V. Kumar, S. Sen, K. P. Muthe, N. K. Gaur, S. K. Gupta, and J. V. Yakhmi, "Copper doped SnO2 nanowires as highly sensitive H2S gas sensor", Sens. Actuator B-Chem., Vol. 138, No. 2, pp. 587-590, 2009. https://doi.org/10.1016/j.snb.2009.02.053
  23. D. Zappa, V. Galstyan, N. Kaur, H. M. M. M. Arachchige, O. Sisman, and E. Comini, "Metal oxide -based hetero- structures for gas sensors- A review", Anal. Chim. Acta., Vol. 1039, pp. 1-23, 2018. https://doi.org/10.1016/j.aca.2018.09.020
  24. H. Dislich, "Sol-gel: Science, processes and products", J. Non-Cryst. Solids, Vol. 80, No. 1-3, pp. 115-121, 1986. https://doi.org/10.1016/0022-3093(86)90384-4
  25. B. Sarikavak-Lisesivdin, "Numerical optimization of twodimensional electron gas in Mgx Zn1-x O/ZnO heterostructures (0.10 https://doi.org/10.1080/14786435.2012.741728
  26. T. C. Zhang, Y. Guo, Z. X. Mei, C. Z. Gu, and X. L. Du, "Visible-blind ultraviolet photodetector based on double heterojunction of n-ZnO/insulator-MgO/p-Si", Appl. Phys. Lett., Vol. 94, No. 11, p. 113508, 2009.