Browse > Article
http://dx.doi.org/10.46670/JSST.2022.31.6.455

Study on the Performance Improvement of ZnO-based NO2 Gas Sensor through MgZnO and MgO  

So-Young, Bak (School of Electronics Engineering, Busan National Unversity)
Se-Hyeong, Lee (School of Electronics Engineering, Busan National Unversity)
Chan-Yeong, Park (School of Electronics Engineering, Busan National Unversity)
Dongki, Baek (School of Electronics Engineering, Busan National Unversity)
Moonsuk, Yi (School of Electronics Engineering, Busan National Unversity)
Publication Information
Journal of Sensor Science and Technology / v.31, no.6, 2022 , pp. 455-460 More about this Journal
Abstract
Brush-like ZnO hierarchical nanostructures decorated with MgxZn1-xO (x = 0.1, 0.2, 0.3, 0.4, and 0.5) were fabricated and examined for application to a gas sensor. They were synthesized using vapor phase growth (VPG) on indium tin oxide (ITO) substrates. To generate electronic accumulation at ZnO surface, MgZnO nanoparticles were prepared by sol-gel method, and the ratio of Mg and Zn was adjusted to optimize the device for NO2 gas detection. As the electrons in the accumulation layer generated by the heterojunction reacted faster and more frequently with the gas, the sensitivity and speed improved. When tested as sensing materials for gas sensors at 100 ppm NO2 at 300℃, these MgZnO decorated ZnO nanostructures exhibited an improvement from 165 to 514 times compared to pristine ZnO. The response and recovery time of the MgZnO decorated ZnO samples were shorter than those of the pristine ZnO. Various analyzing techniques, including field-emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray powder diffraction (XRD) were employed to confirm the growth morphology, atomic composition, and crystalline information of the samples, respectively.
Keywords
Gas sensors; Oxide semiconductors; ZnO; $NO_2$ gas;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S. Munirathinam, "Chapter Six - Industry 4.0: Industrial Internet of Things (IIOT)", Adv. Comput., Vol. 117, pp. 129-164, 2020.   DOI
2 I. H. Khan and M. Javaid, "Role of Internet of Things (IoT) in Adoption of Industry 4.0", J. Ind. Integr. Manag., Vol. 6, No. 2, pp. 1-19, 2021.   DOI
3 A. Mirzaei, S. G. Leonardi, and G. Neri, "Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review", Ceram. Int., Vol. 42, No. 14, pp. 15119-15141, 2016.   DOI
4 M. Kampa and E. Castanas, "Human health effects of air pollution", Environ. Pollut., Vol. 151, No. 2, pp. 362-367, 2008.   DOI
5 A. Dey, "Semiconductor metal oxide gas sensors: A review", Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater., Vol. 229, pp. 206-217, 2018.   DOI
6 N. Yamazoe, G. Sakai, and K. Shinmanoe, "Oxide semiconductor gas sensors", Catal. Surv. Asia, Vol. 7, No. 1, pp. 63-75, 2003.   DOI
7 Y. H. Kim, W. T. Koo, J. S. Jang, and I. D. Kim, "Review of Metal Oxide-based Formaldehyde Gas Sensor to Measure Indoor Air Quality", J. Sens. Sci. Technol., Vol. 28, No. 6, pp. 377-384, 2019.   DOI
8 S. Yang, G. Lei, H. Xu, Z. Lan, Z. Wang, and H. Gu, "Metal Oxide Based Heterojunctions for Gas Sensors: A Review", Nanomater., Vol. 11, No. 4, p. 1026, 2021.
9 G. Korotcenkov, V. Brinzari, I. A. Prionin, M. H. Ham, and B. K. Cho, "Metal Oxides for Application in Conductometric Gas Sensors: How to Choose?", Solid State Phenomena, Vol. 266, pp. 187-195, 2017.   DOI
10 H. J. Kim and J. H. Lee, "Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview", Sens. Actuator B-Chem., Vol. 192, pp. 607-627, 2014.   DOI
11 V. Kobrinsky, A. Rothschild, V. Lumelsky, Y. Komem, and Y. Lifshitz, "Tailoring the gas sensing properties of ZnO thin films through oxygen nonstoichiometry", Appl. Phys. Lett., Vol. 93, No. 11, p. 113502, 2008.
12 D. R. Miller, S. A. Akbar, and P. A. Morris, "Nanoscale metal oxide-based heterojunctions for gas sensing: A review", Sens. Actuator B-Chem., Vol. 204, pp. 250-272, 2014.   DOI
13 L. Wang, Y. Kang, X. Liu, S. Zhang, W. Huang, and S. Wang, "ZnO nanorod gas sensor for ethanol detection", Sens. Actuator B-Chem., Vol. 162, No. 1, pp. 237-243, 2012.   DOI
14 N. Yamazoe, "Toward innovations of gas sensor technology", Sens. Actuator B-Chem., Vol. 108, No. 1-2, pp. 2-14, 2005.   DOI
15 H. R. Kim, K. I. Choi, J. H. Lee, and S. A. Akbar, "Highly sensitive and ultra-fast responding gas sensors using selfassembled hierarchical SnO2 spheres", Sens. Actuator BChem., Vol. 136, No. 1, pp. 138-143, 2009.   DOI
16 A. Z. Sadek, S. Choopun, W. Wlodarski, S. J. Ippolito, and K. Kalantar-zadeh, "Characterization of ZnO NanobeltBased Gas Sensor for H2, NO2, and Hydrocarbon Sensing", IEEE Sens. J., Vol. 7, No. 6, pp. 919-924, 2007.   DOI
17 G. Zhu, C. Xi, H. Xu, D. Zheng, Y. Liu, X. Xu, and X. Shen, "Hierarchical NiO hollow microspheres assembled from nanosheet-stacked nanoparticles and their application in a gas sensor", RSC Adv., Vol. 2, No. 10, pp. 4236-4241, 2012.   DOI
18 D. Calestani, M. Zha, R. Mosca, A. Zappettini, M. C. Carotta, V. D. Natale, and L. Zanotti, "Growth of ZnO tetrapods for nanostructure-based gas", Sens. Actuator BChem., Vol. 144, No. 2, pp. 472-478, 2010.   DOI
19 F. Liu, L. Li, F. Mo, J. Chen, S. Deng, and N. Xu, "A Catalyzed-Growth Route to Directly Form Micropatterned WO2 and WO3 Nanowire Arrays with Excellent Field Emission Behaviors at Low Temperature", Cryst. Growth Des., Vol. 12, No. 1, pp. 7-17, 2004.
20 R. L. V. Wal, G. M. Berger, M. J. Kuils, G. W. Hunter, J. C. Xu, and L. Evans "Synthesis Methods, Microscopy Characterization and Device Integration of Nanoscale Metal Oxide Semiconductors for Gas Sensing", Sensors, Vol. 9, No. 10, pp. 7866-7902, 2009.   DOI
21 S. W. Choi, A. Katoch, G. J. Sun, J. H. Kim, S. H. Kim, and S. S. Kim, "Dual Functional Sensing Mechanism in SnO2-ZnO Core-Shell Nanowires", ACS Appl. Mater. Interfaces, Vol. 6, pp. 8281-8287, 2014.   DOI
22 V. Kumar, S. Sen, K. P. Muthe, N. K. Gaur, S. K. Gupta, and J. V. Yakhmi, "Copper doped SnO2 nanowires as highly sensitive H2S gas sensor", Sens. Actuator B-Chem., Vol. 138, No. 2, pp. 587-590, 2009.   DOI
23 D. Zappa, V. Galstyan, N. Kaur, H. M. M. M. Arachchige, O. Sisman, and E. Comini, "Metal oxide -based hetero- structures for gas sensors- A review", Anal. Chim. Acta., Vol. 1039, pp. 1-23, 2018.   DOI
24 H. Dislich, "Sol-gel: Science, processes and products", J. Non-Cryst. Solids, Vol. 80, No. 1-3, pp. 115-121, 1986.   DOI
25 B. Sarikavak-Lisesivdin, "Numerical optimization of twodimensional electron gas in Mgx Zn1-x O/ZnO heterostructures (0.10   DOI
26 T. C. Zhang, Y. Guo, Z. X. Mei, C. Z. Gu, and X. L. Du, "Visible-blind ultraviolet photodetector based on double heterojunction of n-ZnO/insulator-MgO/p-Si", Appl. Phys. Lett., Vol. 94, No. 11, p. 113508, 2009.