Browse > Article
http://dx.doi.org/10.46670/JSST.2021.30.6.369

Metal-organic frameworks-driven ZnO-functionalized carbon nanotube fiber for NO2 sensor  

Woo, Sungyoon (Division of Materials Science and Engineering, Hanyang University)
Jo, Mingyeong (Division of Materials Science and Engineering, Hanyang University)
Lee, Joon-Seok (Division of Materials Science and Engineering, Hanyang University)
Choi, Seung-Ho (Division of Materials Science and Engineering, Hanyang University)
Lee, Sungju (Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST))
Jeong, Hyeon Su (Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST))
Choi, Seon-Jin (Division of Materials Science and Engineering, Hanyang University)
Publication Information
Journal of Sensor Science and Technology / v.30, no.6, 2021 , pp. 369-375 More about this Journal
Abstract
In this study, heterogeneous ZnO/CNTF composites were developed to improve the NO2-sensing response, facilitated by the self-heating property. Highly conductive and mechanically stable CNTFs were prepared by a wet-spinning process assisted by the liquid crystal (LC) behavior of CNTs. Metal-organic frameworks (MOFs) of ZIF-8 were precipitated on the surface of the CNTF (ZIF-8/CNTF) via one-pot synthesis in solution. The subsequent calcination process resulted in the formation of the ZnO/CNTF composites. The calcination temperatures were controlled at 400, 500, and 600 ℃ in an N2 atmosphere to confirm the evolution of the microstructures and NO2-sensing properties. Gas sensor characterization was performed at 100 ℃ by applying a DC voltage to induce Joule heating through the CNTF. The results revealed that the ZnO/CNTF composite after calcination at 500 ℃ (ZnO/CNTF-500) exhibited an improved response (Rair/Rgas = 1.086) toward 20 ppm NO2 as compared to the pristine CNTF (Rair/Rgas = 1.063). Selective NO2-sensing properties were demonstrated with negligible responses toward interfering gas species such as H2S, NH3, CO, and toluene. Our approach for the synthesis of MOF-driven ZnO/CNTF composites can provide a new strategy for the fabrication of wearable gas sensors integrated with textile materials.
Keywords
Metal-organic frameworks (MOFs); Carbon nanotube fiber (CNTF); Self-heating; Gas sensors; $NO_2$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Kawano, H. C. Chiamori, M. Suter, Q. Zhou, B. D. Sosnowchik, and L. Lin, "An electrothermal carbon nanotube gas sensor", Nano Lett., Vol. 7, No. 12, pp. 3686-3690, 2007.   DOI
2 J. Y. Kang, W. T. Koo, J. S. Jang, D. H. Kim, Y. J. Jeong, R. Kim, J. Ahn, S. J. Choi, and I. D. Kim, "2D layer assembly of Pt-ZnO nanoparticles on reduced graphene oxide for flexible NO2 sensors", Sens. Actuators B-Chem, Vol. 331, pp. 129371(1)-129371(10), 2021.
3 S. J. Choi, D. M. Lee, H. Yu, J. S. Jang, M. H. Kim, J. Y. Kang, H. S. Jeong, and I. D. Kim, "All-carbon fiber-based chemical sensor: Improved reversible NO2 reaction kinetics", Sens. Actuators B-Chem, Vol. 290, pp. 293-301, 2019.   DOI
4 H. Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B. Choi, E. Choi, A. O. Yazaydin, R. Q. Snurr, M. O'Keeffe, and J. Kim, "Ultrahigh porosity in metal-organic frameworks", Science, Vol. 329, No. 5990, pp. 424-428, 2010.   DOI
5 Y. Zhang, X. Bo, C. Luhana, H. Wang, M. Li, and L. Guo, "Facile synthesis of a Cu-based MOF confined in maroporous carbon hybrid material with enhanced electro-catalytic ability", Chem. Commun., Vol. 49, No. 61, pp. 6885-6887, 2013.   DOI
6 O. K. Farha, A. O. Yazaydin, I. Eryazici, C. D. Malliakas, B. G. Hauser, M. G. Kanatzidis, S. T. Nguyen, R. Q. Snurr, and J. T. Hupp, "De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities", Nat. Chem., Vol. 2, No. 11, pp. 944-948, 2010.   DOI
7 W. T. Koo, J. S. Jang, and I. D. Kim, "Metal-organic frameworks for chemiresistive sensors", Chem, Vol. 5, No. 8, pp. 1938-1963, 2019.   DOI
8 P. Pachfule, B. K. Balan, S. Kurungot, and R. Banerjee, "One-dimensional confinement of a nanosized metal organic framework in carbon nanofibers for improved gas adsorption", Chem. Commun., Vol. 48, No. 14, pp. 2009-2011, 2012.   DOI
9 P. Lin, L. Meng, Y. Huang, L. Liu, and D. Fan, "Simultaneously functionalization and reduction of graphene oxide containing isocyanate groups", Appl. Surf. Sci., Vol. 324, pp. 784-790, 2015.   DOI
10 Y. Zhang, X. Bo, A. Nsabimana, C. Han, M. Li, and L. Guo, "Electrocatalytically active cobalt-based metal-organic framework with incorporated macroporous carbon composite for electrochemical applications", J. Mater. Chem. A, Vol. 3, No. 2, pp. 732-738, 2015.   DOI
11 D. J. Tranchemontagne, J. L. Mendoza-Cortes, M. O'Keeffe, and O. M. Yaghi, "Secondary building units, nets and bonding in the chemistry of metal-organic frameworks", Chem. Soc. Rev., Vol. 38, No. 5, pp. 1257-1283, 2009.   DOI
12 S. Cole and E. Gray, New NASA Satellite Maps Show Human Fingerprint on Global Air Quality, NASA, RELEASE 15-233, 2015
13 Z. Xiang, Z. Hu, D. Cao, W. Yang, J. Lu, B. Han, and W. Wang, "Metal-organic frameworks with incorporated carbon nanotubes: improving carbon dioxide and methane storage capacities by lithium doping", Angew. Chem., Int. Ed., Vol. 50, No. 2, pp. 491-494, 2011.   DOI
14 Y. Yang, L. Ge, V. Rudolph, and Z. Zhu, "In situ synthesis of zeolitic imidazolate frameworks/carbon nanotube composites with enhanced CO2 adsorption", Dalton Trans., Vol. 43, No. 19, pp. 7028-7036, 2014.   DOI
15 R. Lin, L. Ge, S. Liu, V. Rudolph, and Z. Zhu, "Mixed-matrix membranes with metal-organic framework-decorated CNT fillers for efficient CO2 separation", ACS Appl. Mater. Interfaces, Vol. 7, No. 27, pp. 14750-14757, 2015.   DOI
16 A. W. Thornton, K. M. Nairn, J. M. Hill, A. J. Hill, and M. R. Hill, "Metal-organic frameworks impregnated with magnesium-decorated fullerenes for methane and hydrogen storage", J. Am. Chem. Soc., Vol. 131, No. 30, pp. 10662-10669, 2009.   DOI
17 W. T. Koo, S. J. Choi, S. J. Kim, J. S. Jang, H. L. Tuller, and I.-D. Kim, "Heterogeneous sensitization of metal-organic framework driven metal@metal oxide complex catalysts on an oxide nanofiber scaffold toward superior gas sensors", J. Am. Chem. Soc., Vol. 138, No. 40, pp. 13431-13437, 2016.   DOI
18 S. J. Choi, H. Yu, J. S. Jang, M. H. Kim, S. J. Kim, H. S. Jeong, and I. D. Kim, "Nitrogen-Doped Single Graphene Fiber with Platinum Water Dissociation Catalyst for Wearable Humidity Sensor", Small, Vol. 14, No. 13, pp. 1703934(1)-1703934(9), 2018.   DOI
19 J. Wei, Y. Hu, Y. Liang, B. Kong, J. Zhang, J. Song, Q. Bao, G. P. Simon, S. P. Jiang, and H. Wang, "Nitrogen-doped nanoporous carbon/graphene nano-sandwiches: Synthesis and application for efficient oxygen reduction", Adv. Func. Mater., Vol. 25, No. 36, pp. 5768-5777, 2015.   DOI
20 W. Huang, X. Zhuang, F. S. Melkonyan, B. Wang, L. Zeng, G. Wang, S. Han, M. J. Bedzyk, J. Yu, and T. J. Marks, "UV-Ozone interfacial modification in organic transistors for high-sensitivity NO2 detection", Adv. Mater., Vol. 29, No. 31, pp. 1701706(1)-1701706(11), 2017.   DOI
21 C. Petit, and T. J. Bandosz, "Exploring the coordination chemistry of MOF-graphite oxide composites and their applications as adsorbents", Dalton Trans., Vol. 41, No. 14, pp. 4027-4035, 2012.   DOI
22 S. J. Choi, D. M. Lee, H. Yu, J. S. Jang, M. H. Kim, J. Y. Kang, H. S. Jeong, and I. D. Kim, "All-carbon fiber-based chemical sensor: Improved reversible NO2 reaction kinetics", Sens. Actuators B-Chem, Vol. 290, pp. 293-301, 2019.   DOI
23 B. Yoon and S. J. Choi, "Selective acetate recognition and sensing using SWCNTs functionalized with croconamides", Sens. Actuators B-Chem, Vol. 346, pp. 130461(1)-130461(8), 2021.
24 S. J. Choi, B. Yoon, J. D. Ray, A. Netchaev, L. C. Moores, and T. M. Swager, "Chemiresistors for the Real-Time Wireless Detection of Anions", Adv. Func. Mater., Vol. 30, No. 7, pp. 1907087(1)-1907087(9), 2020.   DOI