DOI QR코드

DOI QR Code

A Fast, Highly Efficient and Green Protocol for One-Pot Synthesis of 2,4,5-Trisubstituted Imidazoles Catalyzed by [TBA]2[W6O19] as a Reusable Heterogeneous Catalyst

  • Received : 2013.02.11
  • Accepted : 2013.02.28
  • Published : 2013.05.20

Abstract

A simple and efficient synthesis of 2,4,5-trisubstituted imidazoles was achieved via a one-pot three-component cyclocondensation of benzil, aromatic aldehydes, and ammonium acetate in the presence of a catalytic amount of tetrabutylammonium hexatungstate $[TBA]_2[W_6O_{19}]$ as a heterogeneous catalyst under thermal solvent-free conditions. The key features of this methodology are operational simplicity, high yields, short reaction times, and a recyclable catalyst with a very easy work up.

Keywords

References

  1. Ugi, I. Pure Appl. Chem. 2001, 73, 187 https://doi.org/10.1351/pac200173010187
  2. Domling, A. Chem. Rev. 2006, 106, 17. https://doi.org/10.1021/cr0505728
  3. Davoodnia, A.; Tavakoli-Nishaburi, A.; Tavakoli-Hoseini, N. Bull. Korean. Chem. Soc. 2011, 32, 635. https://doi.org/10.5012/bkcs.2011.32.2.635
  4. Zeinali-Dastmalbaf, M.; Davoodnia, A.; Heravi, M. M.; Tavakoli- Hoseini, N.; Khojastehnezhad, A.; Zamani, H. A. Bull. Korean Chem. Soc. 2011, 32, 656. https://doi.org/10.5012/bkcs.2011.32.2.656
  5. Weber, L. Drug Discov. Today 2002, 7, 143. https://doi.org/10.1016/S1359-6446(01)02090-6
  6. Hulme, C.; Gore, V. Curr. Med. Chem. 2003, 10, 51. https://doi.org/10.2174/0929867033368600
  7. Laufer, S. A.; Zimmermann, W.; Ruff, K. J. J. Med. Chem. 2004, 47, 6311. https://doi.org/10.1021/jm0496584
  8. Wolkenberg, S. E.; Wisnoski, D. D.; Leister, W. H.; Wang, Y.; Zhao, Z.; Lindsley, C. W. Org. Lett. 2004, 6, 1453. https://doi.org/10.1021/ol049682b
  9. Lombardino, J. G.; Wiseman, E. H. J. Med. Chem. 1974, 17, 1182. https://doi.org/10.1021/jm00257a011
  10. Antolini, M.; Bozzoli, A.; Ghiron, C.; Kennedy, G.; Rossi, T.; Ursini, A. Bioorg. Med. Chem. Lett. 1999, 9, 1023. https://doi.org/10.1016/S0960-894X(99)00112-2
  11. Ucucu, U.; Karaburun, N. G.; Isikdag, I. Farmaco 2001, 56, 285. https://doi.org/10.1016/S0014-827X(01)01076-X
  12. Chang, L. L.; Sidler, K. L.; Cascieri, M. A.; de Laszlo, S.; Koch, G.; Li, B.; MacCoss, M.; Mantlo, N.; Okeefe, S.; Pang, M.; Rolando, A.; Hagmann, W. K. Bioorg. Med. Chem. Lett. 2001, 11, 2549. https://doi.org/10.1016/S0960-894X(01)00498-X
  13. Wang, L.; Woods, K. W.; Li, Q.; Barr, K. J.; McCroskey, R. W.; Hannick, S. M.; Gherke, L.; Credo, R. B.; Hui, Y. H.; Marsh, K.; Warner, R.; Lee, J. Y.; Zielinsky-Mozng, N.; Frost, D.; Rosenberg, S. H.; Sham, H. L. J. Med. Chem. 2002, 45, 1697. https://doi.org/10.1021/jm010523x
  14. Sircar, I.; Steffen, R. P.; Bobowski, G.; Burke, S. E.; Newton, R. S.; Weishaar, R. E.; Bristol, J. A.; Evans, D. B. J. Med. Chem. 1989, 32, 342. https://doi.org/10.1021/jm00122a011
  15. Murry, J. A. Curr. Opin. Drug Discov. Dev. 2003, 6, 945.
  16. Takle, A. K.; Brown, M. J. B.; Davies, S.; Dean, D. K.; Francis, G.; Gaiba, A.; Hird, A. W.; King, F. D.; Lovell, P. J.; Naylor, A.; Reith, A. D.; Steadman, J. G.; Wilson, D. M. Bioorg. Med. Chem. Lett. 2006, 16, 378. https://doi.org/10.1016/j.bmcl.2005.09.072
  17. Chowdhury, S.; Mohan, R. S.; Scott, J. L. Tetrahedron 2007, 63, 2363. https://doi.org/10.1016/j.tet.2006.11.001
  18. Heravi, M. M.; Saeedi, M.; Karimi, N.; Zakeri, M.; Beheshtiha, Y. S.; Davoodnia, A. Synth. Commun. 2010, 40, 523. https://doi.org/10.1080/00397910902994194
  19. Davoodnia, A.; Khojastehnezhad, A.; Bakavoli, M.; Tavakoli- Hoseini, N. Chin. J. Chem. 2011, 29, 978. https://doi.org/10.1002/cjoc.201190199
  20. Bourissou, D.; Guerret, O.; Gabbai, F. P.; Bertrand, G. Chem. Rev. 2000, 100, 39. https://doi.org/10.1021/cr940472u
  21. Wang, J.; Mason, R.; VanDerveer, D.; Feng, K.; Bu, X. R. J. Org. Chem. 2003, 68, 5415. https://doi.org/10.1021/jo0342020
  22. Karimi, A. R.; Alimohammadi, Z.; Amini, M. M. Mol. Divers. 2010, 14, 635. https://doi.org/10.1007/s11030-009-9197-x
  23. Das Sharma, S.; Hazarika, P.; Konwar, D. Tetrahedron Lett. 2008, 49, 2216. https://doi.org/10.1016/j.tetlet.2008.02.053
  24. Sharma, R. K.; Sharma, C. Catal. Commun. 2011, 12, 327. https://doi.org/10.1016/j.catcom.2010.10.011
  25. Joshi, R. S.; Mandhane, P. G.; Shaikh, M. U.; Kale, R. P.; Gill, C. H. Chin. Chem. Lett. 2010, 21, 429.
  26. Mohammadi, A. A.; Mivechi, M.; Kefayati, H. Monatsh. Chem. 2008, 139, 935. https://doi.org/10.1007/s00706-008-0875-7
  27. Shaterian, H. R.; Ranjbar, M. J. Mol. Liq. 2011, 160, 40. https://doi.org/10.1016/j.molliq.2011.02.012
  28. Das, B.; Kashanna, J.; Kumar, R. A.; Jangili, P. Monatsh. Chem. 2013, 144, 223. https://doi.org/10.1007/s00706-012-0770-0
  29. Wang, L. M.; Wang, Y. H.; Tian, H.; Yao, Y. F.; Shao, J. H.; Liu, B. J. Fluorine Chem. 2006, 127, 1570. https://doi.org/10.1016/j.jfluchem.2006.08.005
  30. Samai, S.; Nandi, G. C.; Singh, P.; Singh, M. S. Tetrahedron 2009, 65, 10155. https://doi.org/10.1016/j.tet.2009.10.019
  31. Shen, M. G.; Cai, C.; Yi, W. B J. Fluorine Chem. 2008, 129, 541. https://doi.org/10.1016/j.jfluchem.2008.03.009
  32. Usyatinsky, A. Y.; Khmelnitsky, Y. L. Tetrahedron Lett. 2000, 41, 5031. https://doi.org/10.1016/S0040-4039(00)00771-1
  33. Safari, J.; Dehghan Khalili, S.; Banitaba, S. H.; Dehghani, H. J. Korean Chem. Soc. 2011, 55, 787. https://doi.org/10.5012/jkcs.2011.55.5.787
  34. Zang, H.; Su, Q.; Mo, Y.; Cheng, B. W.; Jun, S. Ultrason. Sonochem. 2010, 17, 749. https://doi.org/10.1016/j.ultsonch.2010.01.015
  35. Hayes, J. F.; Mitchell, M. B.; Wicks, C. Heterocycles 1994, 38, 575. https://doi.org/10.3987/COM-93-6595
  36. Revesz, L.; Bonne, F.; Makavou, P. Tetrahedron Lett. 1998, 39, 5171. https://doi.org/10.1016/S0040-4039(98)01056-9
  37. Khojastehnezhad, A.; Davoodnia, A.; Bakavoli, M.; Tavakoli-Hoseini, N.; Zeinali-Dastmalbaf, M. Chin. J. Chem. 2011, 29, 297. https://doi.org/10.1002/cjoc.201190081
  38. Davoodnia, A.; Khojastehnezhad, A.; Tavakoli-Hoseini, N. Bull. Korean Chem. Soc. 2011, 32, 2243. https://doi.org/10.5012/bkcs.2011.32.7.2243
  39. Tanaka, K.; Toda, F. Chem. Rev. 2000, 100, 1025. https://doi.org/10.1021/cr940089p
  40. Seifi, N.; Zahedi-Niaki, M. H.; Barzegari, M. R.; Davoodnia, A.; Zhiani, R.; Aghaei Kaju, A. J. Mol. Catal. A Chem. 2006, 260, 77. https://doi.org/10.1016/j.molcata.2006.06.043
  41. Tavakoli-Hoseini, N.; Davoodnia, A. Chin. J. Chem. 2011, 29, 1685. https://doi.org/10.1002/cjoc.201180242
  42. Davoodnia, A. Asian. J. Chem. 2010, 22, 1595.
  43. Davoodnia, A.; Bakavoli, M.; Mohseni, Sh.; Tavakoli-Hoseini, N. Monatsh. Chem. 2008, 139, 963. https://doi.org/10.1007/s00706-007-0844-6
  44. Tavakoli-Hoseini, N.; Davoodnia, A. Asian J. Chem. 2010, 22, 7197.
  45. Davoodnia, A.; Zhiani, R.; Tavakoli-Hoseini, N. Monatsh Chem 2008, 139, 1405. https://doi.org/10.1007/s00706-008-0939-8
  46. Davoodnia, A. Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 2012, 42, 1022. https://doi.org/10.1080/15533174.2012.680140
  47. Mohammadzadeh-Dehsorkh, N.; Davoodnia, A.; Tavakoli-Hoseini, N.; Moghaddas, M. Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 2011, 41, 1135. https://doi.org/10.1080/15533174.2011.591358
  48. Davoodnia, A. Bull. Korean Chem. Soc. 2011, 32, 4286. https://doi.org/10.5012/bkcs.2011.32.12.4286
  49. Davoodnia, A.; Zare-Bidaki, A.; Behmadi, H. Chin. J. Catal. 2012, 33, 1797. https://doi.org/10.1016/S1872-2067(11)60449-X
  50. Fournier, M. In Inorganic Synthesis; Ginsberg, A. P., Ed.; John Wiley: New York, 1990; 27, 80.

Cited by

  1. An Efficient and Environmentally Friendly Procedure for the Synthesis of Some Novel 8-Benzylidene-4-phenyl-3,4,5,6,7,8-hexahydro-1H-quinazolin-2-ones/thiones using Tetrabutylammonium Hexatungstate as a Reusable Heterogeneous Catalyst under Solvent-Free Conditions vol.34, pp.11, 2013, https://doi.org/10.5012/bkcs.2013.34.11.3289
  2. Neat synthesis of octahydroxanthene-1,8-diones, catalyzed by silicotungstic acid as an efficient reusable inorganic catalyst vol.86, pp.5, 2016, https://doi.org/10.1134/S107036321605025X
  3. H magnetic nanoparticles: Preparation, characterization and first catalytic application to the synthesis of 1,8-dioxo-octahydroxanthenes pp.02682605, 2018, https://doi.org/10.1002/aoc.3930
  4. A Facile Procedure for Synthesis of Several 1, 4, 5-Trisubstituted-1Himidazole- 2(3H)-ones and -thiones via a One-pot Three-portion Reaction in Solvent and Microwave Irradiation vol.16, pp.2, 2013, https://doi.org/10.2174/1570178615666180522101532
  5. Organocatalyzed Solvent Free and Efficient Synthesis of 2,4,5‐Trisubstituted Imidazoles as Potential Acetylcholinesterase Inhibitors for Alzheimer's Disease vol.17, pp.3, 2013, https://doi.org/10.1002/cbdv.201900493