• 제목/요약/키워드: Arithmetic operations

검색결과 224건 처리시간 0.023초

Design of Pipelined Floating-Point Arithmetic Unit for Mobile 3D Graphics Applications

  • Choi, Byeong-Yoon;Ha, Chang-Soo;Lee, Jong-Hyoung;Salclc, Zoran;Lee, Duck-Myung
    • 한국멀티미디어학회논문지
    • /
    • 제11권6호
    • /
    • pp.816-827
    • /
    • 2008
  • In this paper, two-stage pipelined floating-point arithmetic unit (FP-AU) is designed. The FP-AU processor supports seventeen operations to apply 3D graphics processor and has area-efficient and low-latency architecture that makes use of modified dual-path computation scheme, new normalization circuit, and modified compound adder based on flagged prefix adder. The FP-AU has about 4-ns delay time at logic synthesis condition using $0.18{\mu}m$ CMOS standard cell library and consists of about 5,930 gates. Because it has 250 MFLOPS execution rate and supports saturated arithmetic including a number of graphics-oriented operations, it is applicable to mobile 3D graphics accelerator efficiently.

  • PDF

퍼지연산 (Fuzzy arithmetic)

  • Chung, Se-Hwa
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 춘계학술대회 학술발표 논문집
    • /
    • pp.5-8
    • /
    • 2000
  • Using the concept of a piecewise linear function, we present new operations for fuzzy arithmetic and then compare the operation based by the extension principle with the new operation.

  • PDF

복소수 데이터 처리가 가능한 멀티미디어 프로세서용 고성능 연산회로의 하드웨어 설계 (Hardware Design of High Performance Arithmetic Unit with Processing of Complex Data for Multimedia Processor)

  • 최병윤
    • 한국정보통신학회논문지
    • /
    • 제20권1호
    • /
    • pp.123-130
    • /
    • 2016
  • 본 논문에서는 멀티미디어용 알고리즘을 고속으로 처리하기 위한 고성능 연산 회로를 설계하였다. 3단 파이프라인 구조로 동작하는 연산회로는 4개의 16-비트${\times}$16-비트 곱셈기의 효율적인 구성, 캐리 보존 형식 데이터에 대한 새로운 부호 확장 기법과 다수 개의 부분 곱셈 결과의 통합과정에 부호 확장을 제거하는 교정 상수 기법을 사용하여 복소수 데이터와 가변 길이 고정 소수점 데이터에 대한 38개의 연산을 처리할 수 있다. 설계한 프로세서는 45nm CMOS 공정에서 최대 동작 속도는 300 MHz이며 약 37,000 게이트로 구성되며 300 MCOPS의 연산 성능을 갖는다. 연산 프로세서는 높은 연산 속도와 응용 분야에 특화된 다양한 연산 지원으로 멀티미디어 프로세서에 효율적으로 응용 가능하다.

초등학교에서의 암산 지도에 관한 논의 (On the Teaching of Mental Arithmetic in Primary Mathematics)

  • 정영옥
    • 대한수학교육학회지:학교수학
    • /
    • 제5권2호
    • /
    • pp.167-189
    • /
    • 2003
  • 본 연구는 최근에 초등학교 수학에서 관심의 대상이 되고 있는 암산 지도의 교수학적 배경과 여러 나라의 암산 지도 실제를 살펴봄으로써 우리나라 초등학교 수학에서의 암산 지도에 대한 시사점을 도출하는 데 그 목적이 있다. 이러한 목적을 위하여 지난 10여 년 동안 계속 논의되어 온 수학적 소양의 의미와 이와 관련 해서 더욱 중시되고 있는 암산의 의미와 중요성뿐만 아니라 미국의 EM, 영국의 NNP, 네덜란드의 TAL, 독일의 mathe 2000 프로젝트에서 제안하고 있는 내용들을 통해 암산 지도의 실제 및 학생들의 암산 전략과 암산 지도에 도움이 되는 교수학적 모델을 살펴보았다. 마지막으로 앞에서 살펴본 이론적 배경을 바탕으로 우리나라 제 7차 수학 교과서의 암산 지도 내용을 암산 전략과 교수학적 모델에 비추어 분석하고 암산 지도를 위한 시사점을 논하였다.

  • PDF

Fuzzy Linear Regression Model Using the Least Hausdorf-distance Square Method

  • Choi, Sang-Sun;Hong, Dug-Hun;Kim, Dal-Ho
    • Communications for Statistical Applications and Methods
    • /
    • 제7권3호
    • /
    • pp.643-654
    • /
    • 2000
  • In this paper, we review some class of t-norms on which fuzzy arithmetic operations preserve the shapes of fuzzy numbers and the Hausdorff-distance between fuzzy numbers as the measure of distance between fuzzy numbers. And we suggest the least Hausdorff-distance square method for fuzzy linear regression model using shape preserving fuzzy arithmetic operations.

  • PDF

Distributivity of fuzzy numbers

  • Hong, Dug-Hun
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 추계학술대회 및 정기총회
    • /
    • pp.22-24
    • /
    • 2002
  • Computation with fuzzy numbers is a prospective branch of a fuzzy set theory regarding the data processing applications. In this paper we consider an open problem about distributivity of fuzzy Quantities based on the extension principle suggested by Mares (1997). Indeed, we show that the distributivity on the class of fuzzy numbers holds and min-norm is the only continuous f-norm which holds the distributivity under f-norm based fuzzy arithmetic operations.

자연수의 사칙연산에 대한 아동의 이해 분석 (The Analysis of Children's Understanding of Operations on Whole Numbers)

  • 황우형;김경미
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제47권4호
    • /
    • pp.519-543
    • /
    • 2008
  • The study has been conducted with 29 children from 4th to 6th grades to realize how they understand addition, subtraction, multiplication, and division of whole numbers, and how their understanding influences solving of one-step word problems. Children's understanding of operations was categorized into "adding" and "combination" for additions, "taking away" and "comparison" for subtractions, "equal groups," "rectangular arrange," "ratio," and "Cartesian product" for multiplications, and "sharing," "measuring," "comparison," "ratio," "multiplicative inverse," and "repeated subtraction" for divisions. Overall, additions were mostly understood additions as "adding"(86.2%), subtractions as "taking away"(86.2%), multiplications as "equal groups"(100%), and divisions as "sharing"(82.8%). This result consisted with the Fischbein's intuitive models except for additions. Most children tended to solve the word problems based on their conceptual structure of the four arithmetic operations. Even though their conceptual structure of arithmetic operations helps to better solve problems, this tendency resulted in wrong solutions when problem situations were not related to their conceptual structure. Children in the same category of understanding for each operations showed some common features while solving the word problems. As children's understanding of operations significantly influences their solutions to word problems, they needs to be exposed to many different problem situations of the four arithmetic operations. Furthermore, the focus of teaching needs to be the meaning of each operations rather than computational algorithm.

  • PDF

초등학생의 연산법칙 이해 수준과 학습 방안 연구 (A Study on the Understanding and Instructional Methods of Arithmetic Rules for Elementary School Students)

  • 김판수
    • East Asian mathematical journal
    • /
    • 제38권2호
    • /
    • pp.257-275
    • /
    • 2022
  • Recently, there are studies the argument that arithmetic rules established by the four fundamental arithmetic operations, in other words, commutative laws, associative laws, distributive laws, should be explicitly described in mathematics textbooks and the curriculum. These rules are currently implicitly presented or omitted from textbooks, but they contain important principles that foster mathematical thinking. This study aims to evaluate the current level of understanding of these computation rules and provide implications for the curriculum and textbook writing. To this end, the correct answer ratio of the five arithmetic rules for 1-4 grades 398 in five elementary schools was investigated and the type of error was analyzed and presented, and the subject to learn these rules and the points to be noted in teaching and learning were also presented. These results will help to clarify the achievement criteria and learning contents of the calculation rules, which were implicitly presented in existing national textbooks, in a new 2022 revised curriculum.

A Reconfigurable Lighting Engine for Mobile GPU Shaders

  • Ahn, Jonghun;Choi, Seongrim;Nam, Byeong-Gyu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제15권1호
    • /
    • pp.145-149
    • /
    • 2015
  • A reconfigurable lighting engine for widely used lighting models is proposed for low-power GPU shaders. Conventionally, lighting operations that involve many complex arithmetic operations were calculated by the shader programs on the GPU, which led to a significant energy overhead. In this letter, we propose a lighting engine to improve the energy-efficiency by supporting the widely used advanced lighting models in hardware. It supports the Blinn-Phong, Oren-Nayar, and Cook-Torrance models, by exploiting the logarithmic arithmetic and optimizing the trigonometric function evaluations for the energy-efficiency. Experimental results demonstrate 12.7%, 42.5%, and 35.5% reductions in terms of power-delay product from the shader program implementations for each lighting model. Moreover, our work shows 10.1% higher energy-efficiency for the Blinn-Phong model compared to the prior art.

IEEE 754 단정도 부동 소수점 연산용 곱셈기 설계 (Design of a Floating Point Multiplier for IEEE 754 Single-Precision Operations)

  • 이주훈;정태상
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.778-780
    • /
    • 1999
  • Arithmetic unit speed depends strongly on the algorithms employed to realize the basic arithmetic operations.(add, subtract multiply, and divide) and on the logic design. Recent advances in VLSI have increased the feasibility of hardware implementation of floating point arithmetic units and microprocessors require a powerful floating-point processing unit as a standard option. This paper describes the design of floating-point multiplier for IEEE 754-1985 Single-Precision operation. Booth encoding algorithm method to reduce partial products and a Wallace tree of 4-2 CSA is adopted in fraction multiplication part to generate the $32{\times}32$ single-precision product. New scheme of rounding and sticky-bit generation is adopted to reduce area and timing. Also there is a true sign generator in this design. This multiplier have been implemented in a ALTERA FLEX EPF10K70RC240-4.

  • PDF