퍼지연산

Fuzzy arithmetic

Se Hwa Chung

Dept. of Mathematics and information, Kyungwon University, Sungnam City, Kyunggi-do, 461-701

Abstract

Using the concept of a piecewise linear function, we present new operations for fuzzy arithmetic and then compare the operation based by the extension principle with the new operation.

1. Preliminaries

A fuzzy set is a map A on a set X to the unit interval. For any fuzzy set A on a set X and any number $\alpha \in [0, 1]$, the α -cut, A^{α} , and support, A^{+0} , are the crisp sets $A^{\alpha} = \{x \in X \mid A(x) \ge \alpha\}$ and $A^{+0} = \{x \in X \mid A(x) \ge 0\}$, respectively. S(A) denotes the closure of A^{+0} in the real line.

A fuzzy number is a fuzzy set A on the set of real numbers \mathbb{R} such that for each $\alpha \in (0,1]$, A^{α} is a non-empty closed interval and A^{+0} is bounded.

A fuzzy number A is said to be **pointed** if the core of A is a one point set.

A linear function f on [a, b] to [c, d] is said to be:

- 1) increasing if for each $x \in X$, $f(x) = \frac{d-c}{b-a}(x-a)+c$,
- 2) decreasing if for each $x \in X$, $f(x) = \frac{c-d}{b-a}(x-a)+d$.

3) **piecewise** if there are a_2 , $a_3 \in [a_1, a_4]$ and b_2 , $b_3 \in [b_1, b_4]$ such that $f \mid \begin{bmatrix} [b_n, b_{n+1}] \\ [a_n, a_{n+1}] \end{bmatrix} : [a_n, a_{n+1}] \to [b_n, b_{n+1}]$ is a linear function for each $n \in \{1, 2, 3\}$, where $a_1 = a$, $a_4 = b$, $b_1 = c$ and $b_4 = d$.

Notation For a fuzzy number A, let S(A) = [a, b] and $A^1 = [d, e]$. Then R(A) and L(A) denote [a, d] and [e, b], respectively.

Definition 1.1 Let A and B be fuzzy numbers. Then a piecewise linear funtion $f: S(A) \to S(B)$ is said to be:

- 1) increasing if $f \mid R(B) : R(A) \to R(B)$, $f \mid B^1 : A^1 \to B^1$ and $f \mid L(B) : L(A) \to L(B)$ are increasing linear functions.
- 2) decreasing if $f \mid \stackrel{L(B)}{R(A)} \colon R(A) \to L(B)$, $f \mid \stackrel{B^1}{A^1} \colon A^1 \to B^1$ and $f \mid \stackrel{R(A)}{L(A)} \colon L(A) \to R(B)$ are decreasing linear functions.

Definition 1.2 A binary operation $*: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is said to be:

- 1) increasing (decreasing, resp.) if $x_1 < y_1$, $x_2 < y_2$ imply ($x_1 * x_2 > y_1 * y_2$, resp.),
- 2) hybrid if $y_2 < x_2$, $x_1 < y_1$ imply $x_1 * x_2 < y_1 * y_2$,

In the following, * denotes the continuous binary operation on $\mathbb R$ and we assume that every fuzzy number is continuous.

Remark Addition +, meet \wedge and join \vee are continuous increasing binary operations on \mathbb{R} and subtraction - is a continuous hybrid binary operation on \mathbb{R} .

Notation Let A and B be fuzzy numbers and $f: S(A) \to S(B)$ a piecewise linear function. Then $\iota(A * B)$ denotes the set $\{x * f(x) \mid x \in S(A)\}$.

Proposition 1.3 Let A and B be fuzzy numbers and $f: S(A) \to S(B)$ a piecewise linear function. Then one has the following:

- 1) $\iota(A * B)$ is a closed interval.
- 2) If f and * are increasing, then $\iota(A*B) = \{x*y \mid x \in S(A), y \in S(B)\}.$
- 3) If f is decreasing and * is hybrid, then $\iota(A*B) = \{x*y \mid x \in S(A), y \in S(B)\}.$

For a general theory of fuzzy sets and that of fuzzy numbers we refer to [1, 3, 6].

2. Operations on fuzzy numbers

Theorem 2.1 Let A and B be fuzzy numbers and $f: S(A) \to S(B)$ a piecewise linear function. Then, we define a fuzzy set on \mathbb{R} , $A \otimes B$, as follows:

$$(A \odot B)(z) = \begin{cases} A(x) \wedge B(f(x)) & \text{if } z = x * f(x) \text{ for some } x \in S(A) \\ 0 & \text{if } otherwise \end{cases}.$$

Then one has the following:

- 1) If f and * are increasing, then $A \circledast B$ is a fuzzy number.
- 2) If f is decreasing and * is hybrid, then $A \otimes B$ is a fuzzy number.

Proposition 2.2 Let A and B be fuzzy numbers. Then $(A \otimes B)(z) \leq (A * B)(z)$ for all $z \in \mathbb{R}$.

Definition 2.3 Let A and B be fuzzy numbers. Then a piecewise linear function $f: S(A) \to S(B)$ is said to be a **shift** (from A to B) if for each $x \in S(A)$, A(x) = B(f(x)).

Definition 2.4 1) Two fuzzy numbers A and B are said to be *i-equipotent* (d-equipotent, resp.), symbolized as $A \sim B$ ($A \approx B$, resp.), provided that there exists an increasing(decreasing, resp.) shift from A to B.

2) Two fuzzy numbers A and B are said to be **equipotent** if they are i-equipotent or d-equipotent.

Proposition 2.5 The relation \sim is a crisp equivalence relation on $F(\mathbb{R})$, where $F(\mathbb{R})$ is the set of fuzzy numbers.

Remark It is easy to show that if A and B are L-R type pointed fuzzy numbers, then they are equipotent.

Theorem 2.6 Let A and B be fuzzy numbers. Then one has the following:

- 1) If $A \sim B$ and * is increasing, then $(A * B)(z) = \bigvee_{z = x * y} A(x) \wedge B(y)$.
- 2) If $A \approx B$ and * is hybrid, then $(A * B)(z) = \bigvee_{z=x*y} A(x) \wedge B(y)$.

Definition 2.7 A fuzzy number A is said to be **positive**(**negative**, resp.) if $S(A) \subseteq [0, \infty)$ ($S(A) \subseteq (-\infty, 0]$, resp.).

Using the exactly same argument as that of Theorem 2.2, we have the following:

Theorem 2.8 1) Let A and B be positive(negative) fuzzy numbers such that $A \sim B$. Then $(A \boxtimes B) = A \times B$.

2) Let A be a positive fuzzy number and B a negative fuzzy number such that $A \approx B$. Then $(A \boxtimes B) = A \times B$.

References

- 1. Kauffmann, A and M. M. Gupta, Introduction to Fuzzy Arithmetic: Theory and Applications, Van Nostrand, New York, 1985.
- Dubois. D and H. Prade, Fuzzy numbers: an overview in Bezdk, J. C., ed., Analysis of Fuzzy Information-Vol. 1: Mathematics and Logic. CRC. Press, Boca. Raton, FL, (1987) 3 - 29.
- Dubois. D and H. Prade, Fuzzy Sets and Systems: Theory and Applications, Academic press New York, 1980.
- Dubois. D and H. Prade, Operations on fuzzy numbers, Internat. j. Systems Sci. 9(1978) 613-626.
- 5. Buckley, J. J. Solving fuzzy equations, Fuzzy Sets and Systems, 50(1), 1992, p 1 14.
- Geordge, J. Klir and Bo Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice Hall PTR, New Jersey, 1995.