• Title/Summary/Keyword: Aquatic Toxicity

Search Result 378, Processing Time 0.028 seconds

THE SHELLFISH POISON IN TAPES PHILIPPINARUM LISCHKE (바지락독에 관한 연구)

  • CHUN Seh Kyu;KIM Seong Jun;CHANG Dong Suck
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.2 no.2
    • /
    • pp.139-146
    • /
    • 1969
  • Incidents of poisoning caused by edible marine bivalve, Tapes philippinarum in Kojedo, Korea were reported in March 1968 and 1969. The results of the present investigation revealed that the incidents were caused by hemorrhagic diathesis and liver injuries, as those caused by acute yellow atrophic liver. The minimal lethal dose of the liver extract of the bivalve varied with seasons. The dose was 0.02ml in March and increased to 0.25ml in April-May 1969. After lune the extract showed no toxicity. Phthalein reaction of smashed liver solution of the bivalve showed a great variation with seasons. In March the values of $P_1$(crude solution) and $P_2$ (boiled one) were 0.1 and 10, at its strongest toxicity. In May those of $P_1\;and\;P_2$ were 1 and 1,000. However the mouse died after intraperitoneal administration of 0.25ml of the liver extract at the $P_2$ value of 1,000. For this reason, determination of the toxicity is difficult by judging from the phthalein reaction alone. The bivalves collected from Pusan, Kaduk, Koje, Hansan, Yeosu, Mokpo and Kunsan were found nontoxic during April-August 1969.

  • PDF

Effects of Zinc and Aluminum Hot-dip Galvanized Sheet Steel on the Gill and Hepatopancreas of the Abalone Haliotis discus hannai (아연 및 알루미늄 용융도금 처리된 강판이 북방전복(Haliotis discus hannai)의 아가미와 간췌장에 미치는 영향)

  • Lee, Chi Hoon;Park, Jun Young;Lee, Young Don
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.4
    • /
    • pp.388-395
    • /
    • 2017
  • We investigated the toxicity of zinc and aluminum hot-dip galvanized sheet steel to abalone Haliotis discus hannai via changes in the gill and hepatopancreas using histological and transmission electron microscopy analysis. Experimental groups were composed of one control and four exposure conditions (direct or indirect exposure to zinc and aluminum hot-dip galvanized sheet steel). In the control group, aluminum exposure groups (direct and indirect), and indirect zinc exposure group, abalone mortality was not observed until the end of the experiment, and no histopathological changes were observed in the gill and hepatopancreas. However, the direct zinc exposure group exhibited 100% mortality. Ultrastructural analysis of the cytoplasm of ciliated and microvilli-bearing epithelial cells from gill filaments revealed electron-dense vesicles near the cell membrane and disruption of the nuclear membrane. We also observed swollen mitochondria and a loss of mitochondrial cristae. The hepatopancreas showed similar changes, and we detected highly electron-dense particles within the vesicles. These results suggest that abalone exposed directly to zinc hot-dip galvanized sheet steel experience acute toxicity, causing damage to cell organelles in the gill and hepatopancreas and, finally, inducing mortality.

Toxicity evaluation based on particle size, contact angle and zeta potential of SiO2 and Al2O3 on the growth of green algae

  • Karunakaran, Gopalu;Suriyaprabha, Rangaraj;Rajendran, Venkatachalam;Kannan, Narayanasamy
    • Advances in nano research
    • /
    • v.3 no.4
    • /
    • pp.243-255
    • /
    • 2015
  • In this investigation, ecotoxicity of nano and micro metal oxides, namely silica ($SiO_2$) and alumina ($Al_2O_3$), on the growth of green algae (Porphyridium aerugineum Geitler) is discussed. Effects of nano and micro particles on the growth, chlorophyll content and protein content of algae are analysed using standard protocols. Results indicate that $SiO_2$ nano and micro $SiO_2$ particles are non-toxic to P. aerugineum Geitler up to a concentration of 1000 mg/L. In addition, $Al_2O_3$ microparticles are less toxic to P. aerugineum Geitler, whereas $Al_2O_3$ nanoparticles are found to be highly toxic at 1000 mg/L. Moreover, $Al_2O_3$ nanoparticles decrease the growth, chlorophyll content, and protein content of tested algae. In addition, zeta potential and contact angle are also important in enhancing the toxicity of metal oxide nanoparticles in aquatic environment. This study highlights a new insight into toxicity evaluation of nanoparticles on beneficial aquatic organisms such as algae.

Electroencephalography (EEG) based Toxicity Test of Algae Organic Matter on Zebrafish (조류기인 유기물질의 제브라피쉬에 대한 뇌파측정기반 독성평가)

  • Oh Sehyun;Jang hyeongjun;Cho Yunchul
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.3
    • /
    • pp.223-230
    • /
    • 2023
  • Harmful algae blooms have become a serious environmental problem in major river basins in Korea. They are known to produce various algal organic matters (AOMs) including intracellular organic matters (IOMs) and extracellular organic matters (EOMs). Generally AOMs cannot be easily removed by coagulation/flocculation process in conventional drinking water plants. AOMs produced by blue-green algae also include various toxins such as Microcystins, Anatoxin-a, and Saxitoxin known to have harmful effects on living organisms in aquatic environment. In this study, toxic effects of EOMs produced by three different algae species (Microcystis sp., Anabaena sp., and Oscillatoria sp.) on zebrafish were investigated using electroencephalography (EEG) recording method, a technology for recording brain activity. Electroencephalographic changes in zebrafish revealed that a low EOM had a negative effect on zebrafish compared to both Anabaena sp. and Oscillatoria sp. at 30 ppm EOM exposures. This result might be due to Microcystins present in EOMs produced by Microcystis sp. As a result of power spectrum density anallysis, exposure to EOMs produced by Microcystis sp. caused a state of vigilance in zebrafish. This EEG based toxicity test can be used to examine effects of harmful materials at low levels on living organisms in an aquatic system.

Potential Association between Insulin-like Growth Factor-1 Receptor Activity and Surf Clam Spisula sachalinensis Larvae Survival

  • Choi, Youn Hee;Nam, Taek Jeong
    • Fisheries and Aquatic Sciences
    • /
    • v.18 no.4
    • /
    • pp.417-420
    • /
    • 2015
  • We investigated the relationship between viability and IGF-1 receptor (IGF-1R) activity in D-shaped and umbo larvae of the surf clam Spisula sachalinensis after treatment with vitrification solution (VS) or freezing. In a toxicity assay, VS1, containing 5 M dimethyl sulfoxide (DMSO), was very harmful to D-shaped and umbo larvae. However, VS2, containing 5 M ethylene glycol (EG), was not harmful to either larval stage. Although VS2 had a promising toxicity test outcome, none of the larvae survived vitrification. After immersion into VSs and freezing, IGF-1R ${\beta}$-subunits were detected in all larvae; however, tyrosine phosphorylation of intracellular ${\beta}$-subunits was detected only in the control and live groups. These results suggest that activation of IGF-1R may influence surf clam larvae viability.

Toxicity and Effects of the Herbicide Glufosinate-Ammonium (Basta) on the Marine Medaka Oryzias dancena

  • Kang, Gil Ran;Song, Ha Yeun;Kim, Dong Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.17 no.1
    • /
    • pp.105-113
    • /
    • 2014
  • Glufosinate-ammonium, a component of the herbicide Basta, is one of the most extensively used pesticides worldwide. In this study, we assessed subchronic and chronic toxicities of Basta and its histopathological effects on the marine medaka Oryzias dancena. Marine medaka were exposed to 0, 2, 4, or 8 mg/L of Basta for 28 or 42 days. The lethal concentration ($LC_{50}$) of Basta for 96 h is 8.76 mg/L. Histological changes in the gills and liver were evaluated with histopathological indices, allowing quantification of the damage to fish exposed to Basta. Blood congestion, lamellar fusion, and epithelial lifting were observed in the gills, and hydropic degeneration, fibrosis, lipid degeneration, leukocyte infiltration, and necrosis were found in the liver. These responses could be useful indicators of Basta toxicity in this species.

Long arm octopus (Octopus minor) extract prevents eye injury caused by particulate matter exposure in zebrafish (Danio rerio) embryos

  • Thilini Ranasinghe;Seon-Heui Cha
    • Fisheries and Aquatic Sciences
    • /
    • v.27 no.2
    • /
    • pp.111-121
    • /
    • 2024
  • Particulate matter (PM) is a mixture of microscopic solid inhalable particles including airborne liquid droplets, and it is implicated with several diseases. The eye does not have a protective barrier among the human organs, consequently it get directly exposed to environmental substances such as PM. The scarcity of treatments for damage to the eyesight and the vision and eye structure being closely related to the structure and function of the central nervous system highlights the cruciality of novel therapeutics. In this study was conducted using in vivo zebrafish vertebrate model which is a useful model due to the conserved genes between human. We found that protective effect of Octopus minor extract against particulate matter-induced adverse effects on eye development in zebrafish (Danio rerio) embryos by regulating antioxidant and anti-inflammatory mRNA expression.

Biological Evaluation for Characteristics of Leachate Toxicity from Municipal Solid Waste Landfill (생물학적 방법에 의한 도시생활폐기물 매립지의 침출수 독성특성 평가)

  • 황인영;류경무
    • Environmental Analysis Health and Toxicology
    • /
    • v.11 no.1_2
    • /
    • pp.31-39
    • /
    • 1996
  • Leachate from municipal solid waste (MSW) landfill, effluent from leachate treatment plant, and ground water sample from a monitoring well near landfill site were tested for an acute toxicity. Microtox toxicity test was used for testing the acute toxicity of leachate and other samples. EC$_{50}$ values which a concentration of pollutant for reducing 50% light output from luminescent bacteria, Photobacterium phosphoreum were determined to assess the toxicity of pollutants as well as the relative toxicity. In addition, characteristics of leachate were studied and compared to those of phenol and pentachlorophenol (PCP) which are typical aquatic toxic pollutants. For leachate, EC$_{50}$ for 30 min incubation was 10.8%, while for phenol and PCP, 46 ppm and 1.2 ppm, respectively. the relative toxicity of treated leachate by in situ aeration with activated sludge was reduced to more than 75% of toxicity of the untreated leachate. Microtox toxicity test was failed to figure out EC$_{50}$ values for groundwater from a monitoring well since the relative toxicity of the unconcentrated sample was too low to estimate EC$_{50}$. Addition of activated carbon to leachate was reduced the relative toxicity. The reduction Pattern of the relative toxicity of leachate by mechanical aeration was similar to that of PCP, but different from that of phenol. These findings suggest that the toxicity of leachate may come from PCP-like toxic compounds rather than phenol-like one. In conclusion, the process of aeration with activated sludge might be very important to reduce the environmental toxicity of leachate. And Microtox test could be a reasonable bioassay for screening and monitoring the environmental toxicity of leachate from municipal solid waste landfill as well as for determining the reduction efficiency of the leachate toxicity by various treatment processes in leachate treatment plant.

  • PDF

Effects of Krill Euphausia superba Fluoride Extract on Toxicity and Oxidative Stress in Liver cell (크릴(Euphausia superba) 불소 추출물의 간세포 독성 및 산화적 스트레스에 미치는 영향)

  • Kim, Jeong Gyun;Yoon, Ho Dong;Park, Sihyang;Kim, Poong Ho;Mok, Jong Soo;Hong, Yumi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.6
    • /
    • pp.682-688
    • /
    • 2013
  • In this study, we investigated about cell toxicity and oxidative stress of HepG2 cell by treatment of sodium fluoride (NaF) and fluoride extracts from krill Euphausia superba meat, shell, whole body and krill meal. The cell toxicity showed significant at 300 and $500{\mu}g/mL$ NaF treatment group. But krill (Euphausia superba) fluoride extract (KFE) treatment in all groups were not toxic. The superoxide radical production increased significantly in NaF treated group, but there was no significant change in KFE treated group. The superoxide dismutase activity was a significant increase 21.5% at $100{\mu}g/mL$ and 24.7% at $300{\mu}g/mL$ treatment group of fluoride extracts from krill meat, and 8.7% at $300{\mu}g/mL$ in krill meals, compared to the control group. However, hydroxy radical flux and catalase and glutathione peroxidase activity of fluoride extracts from krill meat did not change. As a result, for a short period of time, NaF treatment in HepG2 cells affect the cell toxicity and oxidative stress, but in the case of KFE, these were not recognized. Thus, depending on the type of food ingested with fluoride, cell toxicity and oxidative stress was found to be different.

Studies for Reestabilishment of Approval Toxin Amount in Paralytic Shellfish Poison-Infested Shellfish 2. Change of Toxin Composition and Specific Toxicity in Paralytic Shellfish Toxins of Blue mussel, Mytilus edulis and, Oyster, Crassostrea gigas from Woepori, $K\v{o}je$, Korea During Canning Process

  • SHIN Il-Shik;CHOI Su-Ho;LEE Tae-Sik;LEE Hi-Jung;KIM Ji-Hoe;LEE Jong-Soo;KIM Young-Man
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.6
    • /
    • pp.900-908
    • /
    • 1996
  • Changes of paralytic shellfish toxin components and specific toxicity in blue mussel, Mytilus edu/is and oyster, Crassostrea gigas during canning process were investigated by high performance liquid chromatography (HPLC). The $mole\%$ of the frozen shucked blue mussel were in order of $27.5\;mole\%$ of gonyautoxin 1, $23.0\;mole\%$ of gonyautoxin 8 (C1) and $23.0\;mole\%$ of epi-gonyautoxin 8 (C2), while those of the frozen shucked oyster were in order of $29\;mole\%$ of C1, $22\;mole\%$ of C2, $16.7\;mole\%$ of gonyautoxin 2. Both samples had minor amounts of saxitoxin and neosaxitoxin. On the other hand, in case of specific toxicity, the major toxins were consisted of gonyautoxin $1\~4$ in both sample. The toxicity of gonyautoxin $1\~4$ were 88 and $84\%$ in blue mussel and oyster, respectively. According to the experimental results, C1, C2 and gonyautoxin 4 were very sensitive to heat treatment, while gonyautoxin 2 and saxitoxin were pretty heat resistant than any other toxin components.

  • PDF