Browse > Article
http://dx.doi.org/10.12989/anr.2015.3.4.243

Toxicity evaluation based on particle size, contact angle and zeta potential of SiO2 and Al2O3 on the growth of green algae  

Karunakaran, Gopalu (Centre for Nanoscience and Technology, K. S. Rangasamy College of Technology)
Suriyaprabha, Rangaraj (Centre for Nanoscience and Technology, K. S. Rangasamy College of Technology)
Rajendran, Venkatachalam (Centre for Nanoscience and Technology, K. S. Rangasamy College of Technology)
Kannan, Narayanasamy (Department of Biotechnology, K. S. Rangasamy College of Arts and Science)
Publication Information
Advances in nano research / v.3, no.4, 2015 , pp. 243-255 More about this Journal
Abstract
In this investigation, ecotoxicity of nano and micro metal oxides, namely silica ($SiO_2$) and alumina ($Al_2O_3$), on the growth of green algae (Porphyridium aerugineum Geitler) is discussed. Effects of nano and micro particles on the growth, chlorophyll content and protein content of algae are analysed using standard protocols. Results indicate that $SiO_2$ nano and micro $SiO_2$ particles are non-toxic to P. aerugineum Geitler up to a concentration of 1000 mg/L. In addition, $Al_2O_3$ microparticles are less toxic to P. aerugineum Geitler, whereas $Al_2O_3$ nanoparticles are found to be highly toxic at 1000 mg/L. Moreover, $Al_2O_3$ nanoparticles decrease the growth, chlorophyll content, and protein content of tested algae. In addition, zeta potential and contact angle are also important in enhancing the toxicity of metal oxide nanoparticles in aquatic environment. This study highlights a new insight into toxicity evaluation of nanoparticles on beneficial aquatic organisms such as algae.
Keywords
nano metal oxides; Porphyridium aerugineum Geitler; chlorophyll content; zeta potential; contact angle; protein content;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hu, C.W., Li, M., Cui, Y.B., Lia, D.S., Chen, J. and Yang, L.Y. (2010), "Toxicological effects of $TiO_2$ and ZnO nanoparticles in soil on earthworm Eisenia fetida", Soil Biol. Biochem., 42, 586-591.   DOI
2 Huang, C.P., Cha, D.K. and Ismat, S.S. (2005), "Progress report: short term chronic toxicity of photocatalytic nanoparticles to bacteria, algae, and zooplankton", EPA Grant Number: R831721.
3 Hund-Rinke, K. and Simon, M. (2006), "Ecotoxic effect of photocatalytic active nanoparticles ($TiO_2$) on algae and daphnids", Environ. Sci. Pollut. Res., 13, 225-232.   DOI
4 Jeng, H.A. and Swanson, J. (2006), "Toxicity of metal oxide nanoparticles in mammalian cells", J Environ Sci Health, Part A: Environ. Sci. Eng., 41, 2699-2711.   DOI
5 Jiang, W., Mashayekhi, H. and Xing, B. (2009), "Bacterial toxicity comparison between nano- and micro-scaled oxide particles", Environ. Pollut., 157, 1619-1625.   DOI
6 Klaine, S.J., Alvarez, P.J.J., Batley, G.E., Fernades, T.F., Handy, R.D., Lyon, D.Y., Mahendra, S., McLaughlin, M.J. and Lean, J.R. (2008), "Nanomaterials in the environment: behavior, fate, bioavailability and effects", Environ. Toxicol. Chem., 27, 1825-1851.   DOI
7 Knox, J.P. (1995), "The extracellular-matrix in higher-plants 4. Developmentally- regulated proteoglycans and glycoproteins of the plant-cell surface", J. FASEB., 9, 1004-1012.   DOI
8 Lin, D.H., Tian, X.L., Wu, F.C. and Xing, B.S. (2010), "Fate and transport of engineered nanomaterials in the environment", J. Environ. Qual., 39, 1896-1908.   DOI
9 Lowry, O.H., Rosebrough, N.J., Farr, L.A. and Randall, R.J. (1951), "Protein measurement with the folin phenol reagent", J. Biol. Chem., 265-275.
10 Manivasakan, P., Rajendran, V., Rauta, P.R., Sahu, B.B. and Panda, B.K. (2011), "Effect of mineral acids on the production of alumina nanopowder from raw bauxite", Powder Technol., 211, 77-84.   DOI
11 Marcone, G.P.S., Oliveira, A.C., Almeida, G., Umbuzeiro, G.A. and Jardim, W.F. (2012), "Ecotoxicity of $TiO_2$ to Daphnia similis under irradiation", J. Hazard. Mater., 211-212, 436-442.   DOI
12 Mueller, N.C. and Nowack, B. (2008), "Exposure modeling of engineered nanoparticles in the environment", Environ. Sci. Technol., 42, 4447-4453.   DOI
13 Naskar, M.K., Chatterjee, M. and Lakshmi, N.S. (2002), "Sol-emulsiongel synthesis of hollow mullite microspheres", J. Mater. Sci., 37, 343-348.   DOI
14 Navarro, E., Baun, A., Behra, R., Hartmann, N.B., Filser, J., Miao, A., Quigg, A., Santschi, P.H. and Sigg, L. (2008), "Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi", Ecotoxicology, 17, 372-386.   DOI
15 Oberdorster, G., Oberdorster, E. and Oberdorster, J. (2005), "Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles", Environ. Hlth. Perspect., 113, 823-839.   DOI
16 Organisation for Economic Cooperation and Development (1984), "Algal growth inhibition test OECD guidelines for testing of chemicals", 201, Paris, France.
17 Saniger, J.M. (1995), "Al-O infrared vibrational frequencies of c-$A1_2O_3$", Mater. Lett., 22, 109-113.   DOI
18 Suriyaprabha, R., Karunakaran, G., Yuvakkumar, R., Prabu, P., Rajendran, V. and Kannan, N. (2012), "Growth and physiological responses of maize (Zea mays L) to porous silica nanoparticles in soil", J. Nanopart. Res., 14, 1294.   DOI
19 Wang, W., Gu, B., Liang, L. and Hamilton, W. (2003), "Fabrication of near infrared photonic crystals using highly-mono dispersed sub micrometer $SiO_2$ spheres", J. Phys. Chem. B, 107, 12113-12117.   DOI
20 Tarte, P. (1967), "Infra-red spectra of inorganic aluminates and characteristic vibrational frequencies of $AlO_4$ tetrahedra and $AlO_6$ octahedra Spectrochim", Spectrochimica Acta Part A: Molecular Spectroscopy, 23, 2127-2143.   DOI
21 Xiong, D., Fang, T., Yu, L., Sima, X. and Zhu, W. (2011), "Effects of nano-scale $TiO_2$, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage", Sci. Total Environ., 409, 1444-1452.   DOI
22 Yee, N., Benning, L.G., Phoenix, V.R. and Ferris, F.G. (2004), "Characterization of metal-Cyanobacteria sorption reactions: a combined Macroscopic and infrared spectroscopic inves- tigation", Environ. Sci. Technol., 38, 775-782.   DOI
23 Yuvakkumar, R., Elango, V., Rajendran, V. and Kannan, N. (2012), "High-purity nano silica powder from rice husk using a simple chemical method", J Exp Nanosci, ID: 656709.
24 Zhang, W.X. (2003), "Nanoscale iron particles for environmental remediation: an overview", J. Nanopart. Res., 5, 323-332.   DOI
25 Fargasova, A. (2001), "Interactive effect of manganese, molybdenum, nickel, copper I and II and vanadium on the freshwater alga Scenedesmus quadricauda", Bull. Environ. Contam. Toxicol., 67, 688-695.
26 Aruoja, V., Dubourguier, H.C. and Kasemets, K. (2008), "Toxicity of nanoparticles of CuO, ZnO and $TiO_2$ to microalgae Pseudokirchneriella subcapitata", Sci. Total Environ., 407, 1461-1468.
27 Beganskiene, A., Sirutkaitis, V., Kurtinaitiene, M., Juskenas, R. and Kareiva, A. (2004), "FTIR, TEM and NMR investigations of stober silica nanoparticles", Mater. Sci. Medziagotyra, 10, 287-290.
28 Chandradass, J. and Balasubramanian, M. (2006), "Sol gel processing of alumina fibres", J. Mater. Proc. Technol., 173, 275-280.   DOI
29 Chen, K.L. and Elimelech, M. (2007), "Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions", J. Colloid Interface Sci., 309, 126-134.   DOI
30 Cheng, S.H., Lee, C.H., Chen, M.C., Souris, J.S., Tseng, F.G., Yang, C.S., Mou, C.Y., Chen, C.T. and Lo, L.W. (2010), "Tri-functionalization of mesoporous silica nanoparticles for comprehensive cancer theranostics-the trio of imaging, targeting and therapy", J. Mater. Chem., 20, 6149-6157.   DOI
31 Filella, M. and Buffle, J. (1993), "Factors controlling the stability of submicron colloids in natural waters", Colloids Surf A: Physicochem. Eng. Aspects, 73, 255-273.   DOI
32 Handy, R.D., Kammer, F.V., Lead, J.R., Hassellov, M., Owen, R. and Crane, M. (2008a), "The ecotoxicology and chemistry of the manufactured nanoparticles", Ecotoxicology, 17, 287-314,   DOI
33 Handy, R.D., Owen, R. and Valsami-Jones, E. (2008b), "The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs", Ecotoxicology, 17, 315-325.   DOI
34 Heinlaan, M., Ivask, A., Blinova, I., Dubourguier, H.C. and Kahru, A. (2008), "Toxicity of nanosized and bulk ZnO, CuO and $TiO_2$ to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus", Chemosphere, 71, 1308-1316.   DOI
35 Hoeckel, V., DeSchamphelaere, K., Vander Meeren, K.A.C., Lucas, P. and Janssen, S.C.R. (2008), "The ecotoxicity of silica nanoparticles to the alga Pseudokirchneriella subcapitata: importance of surface area", Environ. Toxicol. Chem., 27, 127-136.