• Title/Summary/Keyword: Anti-diabetic drug

Search Result 66, Processing Time 0.026 seconds

Metformin Induces Lipogenesis and Apoptosis in H4IIE Hepatocellular Carcinoma Cells

  • Deokbae Park;Sookyoung Lee;Hyejin Boo
    • Development and Reproduction
    • /
    • v.27 no.2
    • /
    • pp.77-89
    • /
    • 2023
  • Metformin is the most widely used anti-diabetic drug that helps maintain normal blood glucose levels primarily by suppressing hepatic gluconeogenesis in type II diabetic patients. We previously found that metformin induces apoptotic death in H4IIE rat hepatocellular carcinoma cells. Despite its anti-diabetic roles, the effect of metformin on hepatic de novo lipogenesis (DNL) remains unclear. We investigated the effect of metformin on hepatic DNL and apoptotic cell death in H4IIE cells. Metformin treatment stimulated glucose consumption, lactate production, intracellular fat accumulation, and the expressions of lipogenic proteins. It also stimulated apoptosis but reduced autophagic responses. These metformin-induced changes were clearly reversed by compound C, an inhibitor of AMP-activated protein kinase (AMPK). Interestingly, metformin massively increased the production of reactive oxygen species (ROS), which was completely blocked by compound C. Metformin also stimulated the phosphorylation of p38 mitogen-activated protein kinase (p38MAPK). Finally, inhibition of p38MAPK mimicked the effects of compound C, and suppressed the metformin-induced fat accumulation and apoptosis. Taken together, metformin stimulates dysregulated glucose metabolism, intracellular fat accumulation, and apoptosis. Our findings suggest that metformin induces excessive glucose-induced DNL, oxidative stress by ROS generation, activation of AMPK and p38MAPK, suppression of autophagy, and ultimately apoptosis.

Screening of Antioxidative, Anti-platelet Aggregation and Anti-thrombotic Effects of Clove Extracts (정향 추출물의 항산화.항혈소판 응집효과 및 혈전 용해능 탐색)

  • Yang, Young-Yi;Lee, Min-Ja;Lee, Hye-Sook;Park, Won-Hwan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.3
    • /
    • pp.471-481
    • /
    • 2011
  • Clove has been frequently used as anti-diabetic, anti-microbial, anti-inflammatory, anesthetic drug and remedies for stomachache by coldness. In this study, the antioxidant activity of extract from Clove was studied in vitro methods by measuring the antioxidant activity by TEAC, measuring the scavenging effects on reactive oxygen species (ROS) [superoxide anion, hydroxyl radical] and on reactive nitrogen species (RNS) [nitric oxide and peroxynitrite] as well as measuring the inhibitory effect on $Cu^{2+}$-induced human LDL oxidation. Anti-platelet aggregation and anti-thrombotic effects of Clove extracts were studied ex vivo methods by mesuring the inhibitory effect on thrombin induced platelet aggregation and the fibrinolytic activity. The Clove extracts were found to have a potent scavenging activity, as well as an inhibitory effect on LDL oxidation in vitro. Moreover Clove extracts were exhibited remarkable inhibitory effect on platelet aggregation and fibrinolytic activity. In conclusion, the Clove extracts have anti-oxidative and anti-atherosclerotic effects in vitro and ex vivo system, which can be used for developing pharmaceutical drug against oxidative stress and atherosclerosis.

Luteolin, a Bioflavonoid Inhibits Colorectal Cancer through Modulation of Multiple Signaling Pathways: A Review

  • Pandurangan, Ashok Kumar;Esa, Norhaizan Mohd
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.14
    • /
    • pp.5501-5508
    • /
    • 2014
  • Luteolin, 3', 4', 5,7-tetrahydroxyflavone, belongs to a group of naturally occurring compounds called flavonoids that are found widely in the plant kingdom. It possesses many beneficial properties including antioxidant, anti-inflammatory, anti-bacterial, anti-diabetic and anti-proliferative actions. Colorectal cancer (CRC) is a leading cause of cancer related deaths worldwide. Many signaling pathways are deregulated during the progression of colon cancer. In this review we aimed to analyze the protection offered by luteolin on colon cancer. During colon cancer genesis, luteolin known to reduce oxidative stress thereby protects the cell to undergo damage in vivo. Wnt/${\beta}$-catenin signaling, deregulated during neoplastic development, is modified by luteolin. Hence, luteolin can be considered as a potential drug to treat CRC.

Comparison of antioxidant, ${\alpha}$-glucosidase inhibition and anti-inflammatory activities of the leaf and root extracts of Smilax china L. (청미래덩굴 잎 및 뿌리 추출물의 항산화, ${\alpha}$-Glucosidase 억제 및 항염증 활성비교)

  • Kim, Kyoung Kon;Kang, Yun Hwan;Kim, Dae Jung;Kim, Tae Woo;Choe, Myeon
    • Journal of Nutrition and Health
    • /
    • v.46 no.4
    • /
    • pp.315-323
    • /
    • 2013
  • This study was conducted in order to compare the biological activities of leaf and root water extracts of Smilax china L. (SC) by measuring the total polyphenol and flavonoid contents, anti-oxidant activity, inhibitory effect on ${\alpha}$-glucosidase, and anti-inflammatory gene expression. The total polyphenol and flavonoid contents of SC leaf (SCLE) and root (SCRE) water extracts were 127.93 mg GAE/g and 39.50 mg GAE/g and 41.99 mg QE/g and 1.25 mg QE/g, respectively. The anti-oxidative activities of SCLE and SCRE were measured using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical scavenging activity assay and reducing power assay. Both SCLE and SCRE scavenged radicals in a concentration-dependent manner, and SCLE showed stronger radical scavenging activity and reducing power than SCRE; however, both SCLE and SCRE exhibited lower activities than ascorbic acid. Compared to the anti-diabetic drug acarbose, which was used as a positive control, SCLE and SCRE exhibited low ${\alpha}$-glucosidase inhibition activities; nevertheless, the activity of SCLE was 3.7 fold higher than that of SCRE. Finally, SCLE caused significantly decreased expression of the LPS-induced cytokines, iNOS, and COX-2 mRNA in RAW264.7 cells, indicating anti-inflammatory activity. These results indicate that SCLE might be a potential candidate as an anti-oxidant, anti-diabetic, and anti-inflammatory agent.

Anti-diabetic Effect of Fermented Milk Containing Conjugated Linoleic Acid on Type II Diabetes Mellitus

  • Song, Kibbeum;Song, In-Bong;Gu, Hye-Jung;Na, Ji-Young;Kim, Sokho;Yang, Hee-Sun;Lee, Sang-Cheon;Huh, Chang-Ki;Kwon, Jungkee
    • Food Science of Animal Resources
    • /
    • v.36 no.2
    • /
    • pp.170-177
    • /
    • 2016
  • Conjugated linoleic acid (CLA) is a group of positional and geometric isomers of conjugated dienoic derivatives of linoleic acid. CLA has been reported to be able to reduce body fat. In this study, we investigated the antidiabetic effect of fermented milk (FM) containing CLA on type II diabetes db/db mice. Mice were treated with 0.2% low FM, 0.6% high FM, or Glimepiride (GLM) for 6 wk. Our results revealed that the body weight and the levels of fasting blood glucose, serum insulin, and leptin were significantly decreased in FM fed mice compared to db/db mice. Oral glucose tolerance and insulin tolerance were significantly ameliorated in FM fed mice compared to db/db mice. Consistent with these results, the concentrations of serum total cholesterol, triglycerides, and LDL cholesterol were also significantly decreased in FM fed mice compared to db/db mice. However, the concentration of HDL cholesterol was significantly higher in FM fed mice compared to db/db mice. These results were similar to those of GLM, a commercial anti-diabetic drug. Therefore, our results suggest that FM has anti-diabetic effect as a functional food to treat type II diabetes mellitus.

Revisiting PPARγ as a target for the treatment of metabolic disorders

  • Choi, Sun-Sil;Park, Jiyoung;Choi, Jang Hyun
    • BMB Reports
    • /
    • v.47 no.11
    • /
    • pp.599-608
    • /
    • 2014
  • As the prevalence of obesity has increased explosively over the last several decades, associated metabolic disorders, including type 2 diabetes, dyslipidemia, hypertension, and cardiovascular diseases, have been also increased. Thus, new strategies for preventing and treating them are needed. The nuclear peroxisome proliferator-activated receptors (PPARs) are involved fundamentally in regulating energy homeostasis; thus, they have been considered attractive drug targets for addressing metabolic disorders. Among the PPARs, $PPAR{\gamma}$ is a master regulator of gene expression for metabolism, inflammation, and other pathways in many cell types, especially adipocytes. It is a physiological receptor of the potent anti-diabetic drugs of the thiazolidinediones (TZDs) class, including rosiglitazone (Avandia). However, TZDs have undesirable and severe side effects, such as weight gain, fluid retention, and cardiovascular dysfunction. Recently, many reports have suggested that $PPAR{\gamma}$ could be modulated by post-translational modifications (PTMs), and modulation of PTM has been considered as novel approaches for treating metabolic disorders with fewer side effects than the TZDs. In this review, we discuss how PTM of $PPAR{\gamma}$ may be regulated and issues to be considered in making novel anti-diabetic drugs that can modulate the PTM of $PPAR{\gamma}$.

Anti-diabetic Activity of Herbal Drugs (수종 생약의 혈당강하작용)

  • Kim, Bak-Kwang;Park, Man-Ki;Cho, Sool-Yeon;Lee, Jae-Shin;Han, Hye-Kyung;Jeong, Choon-Sik;Jung, Ki-Hwa;Park, Jeong-Hill
    • Korean Journal of Pharmacognosy
    • /
    • v.28 no.2
    • /
    • pp.72-74
    • /
    • 1997
  • Antidiabetic activity of several herbal drugs, which are used as antidiabetics in folkmedicine, was evaluated. Among tested herbal drugs, extract of Astragali Radix significantly lowered blood glucose level in streptozotocin-induced diabetic model rat.

  • PDF

Sea cucumber as a therapeutic aquatic resource for human health

  • Siddiqui, Ruqaiyyah;Boghossian, Anania;Khan, Naveed Ahmed
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.5
    • /
    • pp.251-263
    • /
    • 2022
  • Sea cucumbers are worm-like, leathery bodied, benthic, marine organisms with a branched gonad. There are over 900 species, and these organisms are capable of changing their mechanical state, regenerating their small appendages, and digestive tract. Additionally, sea cucumbers possess both commercial and therapeutical value. Furthermore, it is thought that the metabolites these organisms possess may give rise to their therapeutical value. The use of sea cucumbers in therapy can be traced back to the Ming dynasty, where they were eaten for their tonic properties against constipation, hypertension, and rheumatism. A plethora of studies have been conducted, whereby different metabolites were extracted from sea cucumbers and tested for different therapeutic properties. Herein, we review and discuss the anti-cancer, anti-microbial, anti-coagulant, anti-diabetic, antioxidant, and anti-inflammatory properties of the sea cucumber by assessing literature on PubMed and Google Scholar. Furthermore, the genome and epigenome of these remarkable species is discussed. With the immense data supporting the therapeutic properties of sea cucumbers, further studies are warranted, in order to develop novel and innovative therapeutic compounds for the benefit of human health from these fascinating marine organisms.

HDDM, a formula consisting of seven herbs, had anti-diabetic but no immunomodulatory activities in multiple low doses of streptozotocin-treated female of B6C3F1 mice

  • Zheng, Jian Feng;Guo, Tai L
    • Advances in Traditional Medicine
    • /
    • v.9 no.1
    • /
    • pp.20-38
    • /
    • 2009
  • The objectives of this study were to determine the effect of herb formula HDDM, a modification of Huangdan decoction that has been shown to be effective in the treatment of glomerulonephritis and chronic renal failure, on the blood glucose levels in multiple low doses (MLD; 50 mg/kg for five consecutive days) of streptozotocin (STZ)-treated female B6C3F1 mice. Initial studies were performed to compare diabetes induction in five strains (e.g., B6C3F1, NOD, CD-1, C3H/HeN and C57BL/6) of mice by MLD-STZ, and immune changes following the treatment. The results suggested that the order of susceptibility to diabetes induction was NOD $\approx$ CD-1 > B6C3F1 $\approx$ C3H > C57BL/6. Furthermore, STZ modulation of T cell development, differentiation and activation might play a role in diabetes induction by MLD-STZ treatment. MLD-STZ-induced diabetes in female B6C3F1 mice was moderate, which allowed the evaluation of drug-induced protection or exacerbation of diabetes to be performed. As such, modulation of blood glucose by HDDM, which consisted of Da Huang (Radix Et Rhizoma Rhei), Huang Qi (Radix Astragali Seu Hedysari), Dan Shen (Radix Salviae Miltiorrhizae), Yin Yang Huo (Herba Epimedii), Yi Yi Ren (Semen Coicis or Coix lacryma-jobi), Mai Dong (Radix Ophiopogonis) and Shan Zhu Yu (Fructus Corni), was evaluated in MLD-STZ-treated female B6C3F1 mice. The results suggested that HDDM could lower the blood glucose levels, but it had no immunomodulatory activities. Additionally, HDDM-treated mice exhibited improved glucose tolerance. In conclusion, these studies have suggested that MLD-STZ-induced diabetes in female B6C3F1 mice is a useful model to evaluate drug modulation of diabetes, and that the herb formula HDDM possesses anti-diabetic effects.

Knockdown of LKB1 Sensitizes Endometrial Cancer Cells via AMPK Activation

  • Rho, Seung Bae;Byun, Hyun Jung;Kim, Boh-Ram;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.29 no.6
    • /
    • pp.650-657
    • /
    • 2021
  • Metformin is an anti-diabetic drug and has anticancer effects on various cancers. Several studies have suggested that metformin reduces cell proliferation and stimulates cell-cycle arrest and apoptosis. However, the definitive molecular mechanism of metformin in the pathophysiological signaling in endometrial tumorigenesis and metastasis is not clearly understood. In this study, we examined the effects of metformin on the cell viability and apoptosis of human cervical HeLa and endometrial HEC-1-A and KLE cancer cells. Metformin suppressed cell growth in a dose-dependent manner and dramatically evoked apoptosis in HeLa cervical cancer cells, while apoptotic cell death and growth inhibition were not observed in endometrial (HEC-1-A, KLE) cell lines. Accordingly, the p27 and p21 promoter activities were enhanced while Bcl-2 and IL-6 activities were significantly reduced by metformin treatment. Metformin diminished the phosphorylation of mTOR, p70S6K and 4E-BP1 by accelerating adenosine monophosphate-activated kinase (AMPK) in HeLa cancer cells, but it did not affect other cell lines. To determine why the anti-proliferative effects are observed only in HeLa cells, we examined the expression level of liver kinase B1 (LKB1) since metformin and LKB1 share the same signalling system, and we found that the LKB1 gene is not expressed only in HeLa cancer cells. Consistently, the overexpression of LKB1 in HeLa cancer cells prevented metformin-triggered apoptosis while LKB1 knockdown significantly increased apoptosis in HEC-1-A and KLE cancer cells. Taken together, these findings indicate an underlying biological/physiological molecular function specifically for metformin-triggered apoptosis dependent on the presence of the LKB1 gene in tumorigenesis.