Browse > Article
http://dx.doi.org/10.5483/BMBRep.2014.47.11.174

Revisiting PPARγ as a target for the treatment of metabolic disorders  

Choi, Sun-Sil (Department of Biological Science, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST))
Park, Jiyoung (Department of Biological Science, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST))
Choi, Jang Hyun (Department of Biological Science, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST))
Publication Information
BMB Reports / v.47, no.11, 2014 , pp. 599-608 More about this Journal
Abstract
As the prevalence of obesity has increased explosively over the last several decades, associated metabolic disorders, including type 2 diabetes, dyslipidemia, hypertension, and cardiovascular diseases, have been also increased. Thus, new strategies for preventing and treating them are needed. The nuclear peroxisome proliferator-activated receptors (PPARs) are involved fundamentally in regulating energy homeostasis; thus, they have been considered attractive drug targets for addressing metabolic disorders. Among the PPARs, $PPAR{\gamma}$ is a master regulator of gene expression for metabolism, inflammation, and other pathways in many cell types, especially adipocytes. It is a physiological receptor of the potent anti-diabetic drugs of the thiazolidinediones (TZDs) class, including rosiglitazone (Avandia). However, TZDs have undesirable and severe side effects, such as weight gain, fluid retention, and cardiovascular dysfunction. Recently, many reports have suggested that $PPAR{\gamma}$ could be modulated by post-translational modifications (PTMs), and modulation of PTM has been considered as novel approaches for treating metabolic disorders with fewer side effects than the TZDs. In this review, we discuss how PTM of $PPAR{\gamma}$ may be regulated and issues to be considered in making novel anti-diabetic drugs that can modulate the PTM of $PPAR{\gamma}$.
Keywords
Insulin sensitivity; Metabolic disorders; Post translational modification (PTMs); $PPAR{\gamma}$; Thiazolidinediones (TZDs);
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kim, J. K., Fillmore, J. J., Gavrilova, O., Chao, L., Higashimori, T., Choi, H., Kim, H. J., Yu, C., Chen, Y., Qu, X., Haluzik, M., Reitman, M. L. and Shulman, G. I. (2003) Differential effects of rosiglitazone on skeletal muscle and liver insulin resistance in A-ZIP/F-1 fatless mice. Diabetes 52, 1311-1318.   DOI   ScienceOn
2 Nan, Y. M., Fu, N., Wu, W. J., Liang, B. L., Wang, R. Q., Zhao, S. X., Zhao, J. M. and Yu, J. (2009) Rosiglitazone prevents nutritional fibrosis and steatohepatitis in mice. Scand. J. Gastroenterol. 44, 358-365.
3 Lutchman, G., Modi, A., Kleiner, D. E., Promrat, K., Heller, T., Ghany, M., Borg, B., Loomba, R., Liang, T. J., Premkumar, A. and Hoofnagle, J. H. (2007) The effects of discontinuing pioglitazone in patients with nonalcoholic steatohepatitis. Hepatology 46, 424-429.   DOI   ScienceOn
4 Musso, G., Cassader, M., Rosina, F. and Gambino, R. (2012) Impact of current treatments on liver disease, glucose metabolism and cardiovascular risk in non-alcoholic fatty liver disease (NAFLD): a systematic review and meta-analysis of randomised trials. Diabetologia 55, 885-904.   DOI   ScienceOn
5 Kallwitz, E. R., McLachlan, A. and Cotler, S. J. (2008) Role of peroxisome proliferators-activated receptors in the pathogenesis and treatment of nonalcoholic fatty liver disease. World J. Gastroenterol. 14, 22-28.   DOI
6 Gavrilova, O., Haluzik, M., Matsusue, K., Cutson, J. J., Johnson, L., Dietz, K. R., Nicol, C. J., Vinson, C., Gonzalez, F. J. and Reitman, M. L. (2003) Liver peroxisome proliferator-activated receptor gamma contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass. J. Biol. Chem. 278, 34268-34276.   DOI   ScienceOn
7 Lee, C. H. and Evans, R. M. (2002) Peroxisome proliferator-activated receptor-$\gamma$ in macrophage lipid homeostasis. Trends Endocrinol. Metab. 13, 331-335.   DOI   ScienceOn
8 Hevener, A. L., Olefsky, J. M., Reichart, D., Nguyen, M. T., Bandyopadyhay, G., Leung, H. Y., Watt, M. J., Benner, C., Febbraio, M. A., Nguyen, A. K., Folian, B., Subramaniam, S., Gonzalez, F. J., Glass, C. K. and Ricote, M. (2007) Macrophage $PPAR{\gamma}$ is required for normal skeletal muscle and hepatic insulin sensitivity and full antidiabetic effects of thiazolidinediones. J. Clin. Invest. 117, 1658-1669.   DOI   ScienceOn
9 Odegaard, J. I., Ricardo-Gonzalez, R. R., Goforth, M. H., Morel, C. R., Subramanian, V., Mukundan, L., Red Eagle, A., Vats, D., Brombacher, F., Ferrante, A. W. and Chawla, A. (2007) Macrophage-specific $PPAR{\gamma}$ controls alternative activation and improves insulin resistance. Nature 447, 1116-1120.   DOI   ScienceOn
10 Steppan, C. M., Bailey, S. T., Bhat, S., Brown, E. J., Banerjee, R. R., Wright, C. M., Patel, H. R., Ahima, R. S. and Lazar, M. A. (2001) The hormone resistin links obesity to diabetes. Nature 409, 307-312.   DOI   ScienceOn
11 Yamauchi, T., Kamon, J., Waki, H., Murakami, K., Motojima, K., Komeda, K., Ide, T., Kubota, N., Terauchi, Y., Tobe, K., Miki, H., Tsuchida, A., Akanuma, Y., Nagai, R., Kimura, S. and Kadowaki T. (2001) The mechanisms by which both heterozygous peroxisome proliferator-activated receptor gamma (PPARgamma) deficiency and $PPAR{\gamma}$ agonist improve insulin resistance. J. Biol. Chem. 276, 41245-41254.   DOI   ScienceOn
12 Guan, H. P., Li, Y., Jensen, M. V., Newgard, C. B., Steppan, C. M. and Lazar, M. A. (2002) A futile metabolic cycle activated in adipocytes by antidiabetic agents. Nat. Med. 8, 1122-1128.   DOI   ScienceOn
13 Peraldi P., Xu, M. and Spiegelman, B.M. (1997) Thiazolidinediones block tumor necrosis factor-alpha-induced inhibition of insulin signaling. J. Clin. Invest. 100, 1863-1869.   DOI   ScienceOn
14 Ahmadian, M., Suh, J. M., Hah, N., Liddle, C., Atkins, A. R., Downes, M. and Evans, R. M. (2013) $PPAR{\gamma}$ signaling and metabolism: the good, the bad and the future. Nat. Med. 19, 557-566.
15 Rajala, M. W., Obici, S., Scherer, P. E. and Rossetti, L. (2003) Adipose-derived resistin and gut-derived resistin-like molecule-gselectively impair insulin action on glucose production. J. Clin. Invest. 111, 225-300.   DOI   ScienceOn
16 Combs T. P., Berg A. H., Obici S., Scherer P. E. and Rossetti, L. (2001) Endogenous glucose production is inhibited by the adipose-derived protein Acrp30. J. Clin. Invest. 108, 1875-1881.   DOI   ScienceOn
17 Berg, A. H., Combs, T. P., Du, X., Brownlee, M. and Scherer, P. E. (2001) The adipocytesecreted protein Acrp30 enhances hepatic insulin action. Nat. Med. 7, 947-953.   DOI   ScienceOn
18 Miles, P. D., Barak, Y., He, W., Evans, R. M. and Olefsky, J. M. (2000) Improved insulin-sensitivity in mice heterozygous for PPAR-gamma deficiency. J. Clin. Invest. 105, 287-292.   DOI   ScienceOn
19 Tang, X., Guilherme, A., Chakladar, A., Powelka, A. M., Konda, S., Virbasius, J. V., Nicoloro, S. M., Straubhaar, J. and Czech, M. P. (2006) An RNA interference-based screen identifies MAP4K4/NIK as a negative regulator of PPAR gamma, adipogenesis, and insulin-responsive hexose transport. Proc. Natl. Acad. Sci. U.S.A. 103, 2087-2092.   DOI   ScienceOn
20 Gregoire, F. M., Zhang, F., Clarke, H. J., Gustafson, T. A., Sears, D. D., Favelyukis,S., Lenhard, J., Rentzeperis, D., Clemens, L. E., Mu, Y. and Lavan, B. E. (2009). MBX-102/JNJ39659100, a novel peroxisome proliferator-activated receptor-ligand with weak transactivation activity retains antidiabetic properties in the absence of weight gain and edema. Mol. Endocrinol. 23, 975-988.   DOI   ScienceOn
21 Zhang, B., Berger, J., Zhou, G., Elbrecht, A., Biswas, S., White-Carrington, S., Szalkowski, D. and Moller, D. E. (1996) Insulin- and mitogen-activated protein kinase-mediated phosphorylation and activation of peroxisome proliferator-activated receptor gamma. J. Biol. Chem. 271, 31771-31774.   DOI   ScienceOn
22 Berger, J. P., Petro, A. E., Macnaul, K. L., Kelly, L. J., Zhang, B. B., Richards, K., Elbrecht, A., Johnson, B. A., Zhou, G., Doebber, T. W., Biswas, C., Parikh, M., Sharma, N., Tanen, M. R., Thompson, G. M., Ventre, J., Adams, A. D., Mosley, R., Surwit, R. S. and Moller, D. E. (2003) Distinct properties and advantages of a novel peroxisome proliferator-activated protein [gamma] selective modulator. Mol. Endocrinol. 17, 662-676.   DOI   ScienceOn
23 Camp, H. S. and Tafuri, S. R. (1997) Regulation of peroxisome proliferator-activated receptor gamma activity by mitogen-activated protein kinase. J. Biol. Chem. 272, 10811-10816.   DOI   ScienceOn
24 Reginato, M. J., Krakow, S. L., Bailey, S. T. and Lazar, M. A. (1998) Prostaglandins promote and block adipogenesis through opposing effects on peroxisome proliferator-activated receptor gamma. J. Biol. Chem. 273, 1855-1858.   DOI   ScienceOn
25 Adams, M., Reginato, M. J., Shao, D., Lazar, M. A. and Chatterjee, V. K. (1997) Transcriptional activation by peroxisome proliferator-activated receptor gamma is inhibited by phosphorylation at a consensus mitogen- activated protein kinase site. J. Biol. Chem. 272, 5128-5132.   DOI   ScienceOn
26 Shao, D., Rangwala, S. M., Bailey, S. T., Krakow, S. L., Reginato, M. J. and Lazar, M. A. (1998) Interdomain communication regulating ligand binding by PPAR-gamma. Nature 396, 377-380.   DOI   ScienceOn
27 Iankova, I., Petersen, R. K., Annicotte, J. S., Chavey, C., Hansen, J. B., Kratchmarova, I., Sarruf, D., Benkirane, M., Kristiansen, K. and Fajas, L. (2006) Peroxisome proliferator-activated receptor gamma recruits the positive transcription elongation factor b complex to activate transcription and promote adipogenesis. Mol. Endocrinol. 20, 1494-1505.   DOI   ScienceOn
28 Choi, J. H., Banks, A. S., Estall, J. L., Kajimura, S., Bostrom, P., Laznik, D., Ruas, J. L., Chalmers, M. J., Kamenecka, T. M., Bluher, M., Griffin, P. R. and Spiegelman, B. M. (2010) Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARgamma by Cdk5. Nature 466, 451-456.   DOI   ScienceOn
29 Rangwala, S. M., Rhoades, B., Shapiro, J. S., Rich, A. S., Kim, J. K., Shulman, G. I., Kaestner, K. H. and Lazar, M. A. (2003) Genetic modulation of PPARgamma phosphorylation regulates insulin sensitivity. Dev. Cell 5, 657-663.   DOI   ScienceOn
30 Compe, E., Drane, P., Laurent, C., Diderich, K., Braun, C., Hoeijmakers, J. H. and Egly, J. M. (2005) Dysregulation of the peroxisome proliferator-activated receptor target genes by XPD mutations. Mol. Cell. Biol. 25, 6065-6076.   DOI   ScienceOn
31 Dhavan, R. and Tsai, L. H. (2001) A decade of CDK5. Nat. Rev. Mol. Cell Biol. 2, 749-759.   DOI   ScienceOn
32 Li P, Fan W, Xu, J., Lu, M., Yamamoto, H., Auwerx, J., Sears, D. D., Talukdar, S., Oh, D., Chen, A., Bandyopadhyay, G., Scadeng, M., Ofrecio, J. M., Nalbandian, S. and Olefsky, J. M. (2011) Adipocyte NCoR knockout decreases $PPAR{\gamma}$ phosphorylation and enhances $PPAR{\gamma}$ activity and insulin sensitivity. Cell 147, 815-826.   DOI   ScienceOn
33 Geiss-Friedlander, R. and Melchior, F. (2007) Concepts in sumoylation: a decade on. Nat. Rev. Mol. Cell Biol. 8, 947-956.   DOI   ScienceOn
34 Floyd, Z. E. and Stephens, J. M. (2002) Interferon-gammamediated activation and ubiquitin-proteasomedependent degradation of PPAR gamma in adipocytes. J. Biol. Chem. 277, 4062-4068.   DOI   ScienceOn
35 Werman, A., Hollenberg, A., Solanes, G., Bjorbaek, C., Vidal-Puig, A. J. and Flier, J. S. (1997) Ligand-independent activation domain in the N terminus of peroxisome proliferator-activated receptor gamma (PPARgamma). Differential activity of PPARgamma1 and -2 isoforms and influence of insulin. J. Biol. Chem. 272, 20230-20235.   DOI   ScienceOn
36 Hietakangas, V., Anckar, J., Blomster, H. A., Fujimoto, M., Palvimo, J. J., Nakai, A. and Sistonen, L. (2006) PDSM, a motif for phosphorylation-dependent SUMO modification. Proc. Natl. Acad. Sci. U.S.A. 103, 45-50.   DOI   ScienceOn
37 Yamashita, D., Yamaguchi, T., Shimizu, M., Nakata, N., Hirose, F. and Osumi, T. (2004) The transactivating function of peroxisome proliferator-activated receptor gamma is negatively regulated by SUMO conjugation in the amino-terminal domain. Genes Cells 9, 1017-1029.   DOI   ScienceOn
38 Dutchak, P. A., Katafuchi, T., Bookout, A. L., Choi, J. H., Yu, R. T., Mangelsdorf, D. J. and Kliewer, S. A. (2012) Fibroblast growth factor-21 regulates PPARgamma activity and the antidiabetic actions of thiazolidinediones. Cell 148, 556-567.   DOI   ScienceOn
39 Pascual, G., Fong, A. L., Ogawa, S., Gamliel, A., Li, A. C., Perissi, V., Rose, D. W., Willson, T. M., Rosenfeld, M. G. and Glass, C. K. (2005) A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-gamma. Nature 437, 759-763.   DOI   ScienceOn
40 Hauser, S., Adelmant, G., Sarraf, P., Wright, H. M., Mueller, E. and Spiegelman, B. M. (2000) Degradation of the peroxisome proliferatoractivated receptor gamma is linked to ligand-dependent activation. J. Biol. Chem. 275, 18527-18533.   DOI   ScienceOn
41 Qiang, L., Wang, L., Kon, N., Zhao, W., Lee, S., Zhang, Y., Rosenbaum, M., Zhao, Y., Gu, W., Farmer, S. R. and Accili, D. (2012) Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of $PPAR{\gamma}$. Cell 150, 620-632.   DOI   ScienceOn
42 Kilroy, G. E., Zhang, X. and Floyd, Z. E. (2009) PPAR-gamma AF-2 domain functions as a component of a ubiquitin- dependent degradation signal. Obesity (Silver Spring) 17, 665-673.   DOI   ScienceOn
43 Ji, S., Park, S. Y., Roth, J., Kim, H. S. and Cho, J.W. (2012) O-GlcNAc modification of $PPAR{\gamma}$ reduces its transcriptional activity. Biochem. Biophys. Res. Commun. 417, 1158-1163.   DOI   ScienceOn
44 Li, A., Xue, Y., Jin, C., Wang, M. and Yao, X. (2006) Prediction of Nepsilon-acetylation on internal lysines implemented in Bayesian Discriminant Method. Biochem. Biophys. Res. Commun. 350, 818-824.   DOI   ScienceOn
45 Acton, J. J. 3rd., Black, R. M., Jones, A. B., Moller, D. E., Colwell, L., Doebber, T. W., Macnaul, K. L., Berger, J. and Wood, H. B. (2005) Benzoyl 2-methyl indoles as selective PPARgamma modulators. Bioorg. Med. Chem. Lett. 15, 357-362.   DOI   ScienceOn
46 Choi, J. H., Banks, A. S., Kamenecka, T. M., Busby, S. A., Chalmers, M. J., Kumar, N., Kuruvilla, D. S., Shin, Y., He, Y., Bruning, J. B., Marciano, D. P., Cameron, M. D., Laznik, D., Jurczak, M. J., Schurer, S. C., Vidovic, D., Shulman, G. I., Spiegelman, B. M. and Griffin, P. R. (2011) Antidiabetic actions of a non-agonist $PPAR{\gamma}$ ligand blocking Cdk5-mediated phosphorylation. Nature 477, 477-481.   DOI   ScienceOn
47 Harms, M. and Seale P. (2013) Brown and beige fat: development, function and therapeutic potential. Nat. Med. 19, 1252-1263.   DOI   ScienceOn
48 Ohno, H., Shinoda, K., Spiegelman, B. M. and Kajimura, S. (2012) $PPAR{\gamma}$ agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metab. 15, 395-404.   DOI   ScienceOn
49 Chawla, A., Repa, J. J., Evans, R. M. and Mangelsdorf, D. J. (2001) Nuclear receptors and lipid physiology: opening the X-files. Science 5548, 1688-1670.
50 Reddy, J. K. and Hashimoto, T. (2001) Peroxisomal beta-oxidation and peroxisome proliferator-activated receptor alpha: an adaptive metabolic system. Annu. Rev. Nutr. 21, 193-230.   DOI   ScienceOn
51 Issemann, I. and Green, S. (1990) Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347, 645-650.   DOI   ScienceOn
52 Dreyer, C., Krey, G., Keller, H., Givel, F., Helftenbein, G. and Wahli, W. (1992) Control of the peroxisomal beta-oxidation pathway by a novel family of nuclear hormone receptors. Cell 68, 879-887.   DOI   ScienceOn
53 Evan, R. M., Barish, G. D. and Wang, Y. X. (2004) PPARs and the complex journey to obesity. Nat. Med. 10, 355-361.   DOI   ScienceOn
54 Lehmann, J. M., Moore, L. B., Smith-oliver, T., A., Wilkison, W., O., Willson, T., M. and Kliewer, S., A. (1995) An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J. Biol. Chem. 270, 12953-12956.   DOI   ScienceOn
55 Peters, J. M., Lee, S. S, Li W., Ward, J. M., Gavrilova, O., Everett, C., Reitman, M. L., Hudson, L. D. and Gonzalez, F. J. (2000) Growth, adipose, brain, and skin alterations resulting from targeted disruption of the mouse peroxisome proliferator-activated receptor beta(delta). Mol. Cell. Biol. 20, 5119-5128.   DOI   ScienceOn
56 Oliver, W. R. Jr., Shenk, J. L., Snaith, M. R., Russell, C. S., Plunket, K. D., Bodkin, N. L., Lewis, M. C., Winegar, D. A., Sznaidman, M. L., Lambert, M. H., Xu, H. E., Sternbach, D. D., Kliewer, S. A., Hansen, B. C. and Willson, T. M. (2001) A selective peroxisome proliferator-activated receptors-delta agonist promotes reverse cholesterol transport. Proc. Natl. Acad. Sci. U.S.A. 98, 5306-5311.   DOI   ScienceOn
57 Riserus, U., Sprecher, D., Johnson, T., Olson, E., Hirschberg, S., Liu, A., Fang, Z., Hegde, P., Richards, D., Sarov-Blat, L., Strum, J. C., Basu, S., Cheeseman, J., Fielding, B. A., Humphreys, S. M., Danoff, T., Moore, N. R., Murgatroyd, P, O'Rahilly, S., Sutton, P., Willson, T., Hassall, D., Frayn, K. N. and Karpe, F. (2008) Activation of peroxisome proliferator-activated receptor (PPAR)delta promotes reversal of multiple metabolic abnormalities, reduces oxidative stress, and increases fatty acid oxidation in moderately obese men. Diabetes 57, 332-339.   DOI   ScienceOn
58 Berger, J., Patel, H. V., Woods, J., Hayes, N. S., Parent, S. A., Clemas, J., Leibowitz, M. D., Elbrecht, A., Rachubinski, R. A., Capone, J. P. and Moller, D. E. (2000) A PPARgamma mutant serves as a dominant negative inhibitor of PPAR signaling and is localized in the nucleus. Mol. Cell. Endocrinol. 162, 57-67.   DOI   ScienceOn
59 Tontonoz, P., Hu, E. and Spiegelman, B. M. (1994) Stimulation of adipogenesis in fibroblasts by $PPAR{\gamma}$2, a lipid-activated transcription factor. Cell 79, 1147-1156.   DOI   ScienceOn
60 Tontonoz, P. and Spiegelman, B. M. (2008) Fat and beyond: the diverse biology of PPARgamma. Annu. Rev. Biochem. 77, 289-312.   DOI   ScienceOn
61 Barroso, I., Gurnell, M., Crowle,y V. E., Agostini, M., Schwabe, J. W., Soos, M. A., Maslen, G. L., Williams, T. D., Lewis, H., Schafer, A. J., Chatterjee, V. K. and O'Rahilly, S. (1999) Dominant negative mutations in human PPARgamma associated with severe insulin resistance, diabetes mellitus and hypertension. Nature 402, 880-883.
62 Barak, Y., Nelson, M. C., Ong, E. S., Jones, Y. Z., Ruiz-Lozano, P., Chien, K. R., Koder, A. and Evans, R. M. (1999) PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol. Cell 4, 585-595.   DOI   ScienceOn
63 Rosen, E. D., Sarraf, P., Troy, A. E., Bradwin, G., Moore, K., Milstone, D. S., Spiegelman, B. M. and Mortensen, R. M. (1999) PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol. Cell 4, 611-617.   DOI   ScienceOn
64 Gray, S. L., Nora, E. D., Grosse, J., Manieri, M., Stoeger, T., Medina-Gomez, G., Burling, K., Wattler, S., Russ, A., Yeo, G. S., Chatterjee, V. K., O'Rahilly, S., Voshol, P. J., Cinti, S. and Vidal-Puig, A. (2006) Leptin deficiency unmasks the deleterious effects of impaired peroxisome proliferator-activated receptor gamma function (P465L PPARgamma) in mice. Diabetes 55, 2669-2677.   DOI   ScienceOn
65 Tamori, Y., Masugi, J., Nishino, N. and Kasuga, M. (2002) Role of peroxisome proliferator-activated receptor-gamma in maintenance of the characteristics of mature 3T3-L1 adipocytes. Diabetes 51, 2045-2055.   DOI   ScienceOn
66 Hevener, A. L., He, W., Barak, Y., Le, J., Bandyopadhyay, G., Olson, P., Wilkes, J., Evans, R. M. and Olefsky, J. (2003) Muscle-specific PPARg deletion causes insulin resistance. Nat. Med. 9, 1491-1497.   DOI   ScienceOn
67 Matsusue, K., Haluzik, M., Lambert, G., Yim, S. H., Gavrilova, O., Ward, J. M., Brewer, B., Jr., Reitman, M. L. and Gonzalez, F. J. (2003) Liverspecific disruption of PPARgamma in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes. J. Clin. Invest. 111, 737-747.   DOI   ScienceOn
68 Rangwala, S. M., Rhoades, B., Shapiro, J. S., Rich, A. S., Kim, J. K., Shulman, G. I., Kaestner, K. H. and Lazar, M. A. (2003) Genetic modulation of PPARgamma phosphorylation regulates insulin sensitivity. Dev. Cell 5, 657-663.   DOI   ScienceOn
69 He, W., Barak, Y., Hevener, A., Olson, P., Liao, D., Le, J., Nelson, M., Ong, E., Olefsky, J. M. and Evans, R. M. (2003) Adipose-specific peroxisome proliferator-activated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle. Proc. Natl. Acad. Sci. U.S.A. 100, 15712-15717.   DOI   ScienceOn
70 Agarwal, A. K. and Garg, A. (2002) A novel heterozygous mutation in peroxisome proliferatoractivated receptor-gamma gene in a patient with familial partial lipodystrophy. J. Clin. Endocrinol. Metab. 87, 408-411.
71 Hegele, R. A., Cao, H., Frankowski, C., Mathews, S. T. and Leff, T. (2002) PPARG F388L, a transactivation-deficient mutant, in familial partial lipodystrophy. Diabetes 51, 3586-3590.   DOI   ScienceOn
72 Forman, B. M., Tontonoz, P., Chen, J., Brun, R. P., Spiegelman, B. M. and Evans, R. M. (1995) 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell 83, 803-812.   DOI   ScienceOn
73 Savage, D. B., Tan, G. D., Acerini, C. L., Jebb, S. A., Agostini, M., Gurnell. M., Williams, R. L., Umpleby, A. M., Thomas, E. L., Bell, J. D., Dixon, A. K., Dunne, F., Boiani, R., Cinti, S., Vidal-Puig, A., Karpe, F., Chatterjee, V. K. and O'Rahilly, S. (2003) Human metabolic syndrome resulting from dominant-negative mutations in the nuclear receptor peroxisome proliferator-activated receptor-gamma. Diabetes 52, 910-917.   DOI   ScienceOn
74 Desvergne, B. and Wahli, W. (1999) Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr. Rev. 20, 649-688.
75 Chandra, V., Huang, P., Hmuro, Y., Raghuram, S., wang, Y., Burris, T. P. and Rastinejad, F. (2008) Structure of the intact PPAR-gamma-RXR- nuclear receptor complex on DNA. Nature 456, 350-356.   DOI
76 Gronemeyer, H., Gustafsson, J. A. and Laudet, V. (2004) Principles for modulation of the nuclear receptor superfamily. Nat. Rev. Drug. Discov. 3, 950-964.   DOI   ScienceOn
77 Krey, G., Braissant, O., L'Horset, F., Kalkhoven, E., Perroud, M., Parker, M. G. and Wahli, W. (1997) Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay. Mol. Endocrinol. 11, 779-791.   DOI
78 Keller, H., Dreyer, C., Medin, J., Mahfoudi, A., Ozato, K. and Wahli, W. (1993) Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator-activated receptor-retinoid X receptor heterodimers. Proc. Natl. Acad. Sci. U.S.A. 90, 2160-2164.   DOI
79 Nagy, L., Tontonoz, P., Alvarez, J. G., Chen, H. and Evans, R. M. (1998) Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell 93, 229-240.   DOI   ScienceOn
80 Kliewer, S. A., Lenhard, J. M., Willson, T. M., Patel, I., Morris, D. C. and Lehmann, J. M. (1995) A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor ${\gamma}$ and promotes adipocyte differentiation. Cell 83, 813-819.   DOI   ScienceOn
81 Kung, J. and Henry, R. R. (2012) Thiazolidinedione safety. Expert. Opin. Drug Saf. 11, 565-579.   DOI   ScienceOn
82 Nolan, J.J., Ludvik, B., Beerdsen, P., Joyce, M. and Olefsky, J. (1994) Improvement in glucose tolerance and insulin resistance in obese subjects treated with troglitazone. N. Engl. J. Med. 331, 1188-1193.   DOI   ScienceOn
83 Lehmann, J. M., Moore, L. B., Smith-Oliver, T. A., Wilkison, W. O., Willson, T. M. and Kliewer, S. A. (1995) An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J. Biol. Chem. 270, 12953-12956.   DOI   ScienceOn
84 Berger, J., Leibowitz, M. D., Doebber, T. W., Elbrecht, A., Zhang, B., Zhou, G., Biswas, C., Cullinan, C. A., Hayes, N. S., Li, Y., Tanen, M., Ventre, J., Wu, M. S., Berger, G. D., Mosley, R., Marquis, R., Santini C, Sahoo, S. P., Tolman, R. L., Smith, R. G. and Moller, D.E. (1999). Novel peroxisome proliferator-activated receptor (PPAR) gamma and PPARdelta ligands produce distinct biological effects. J. Biol. Chem. 274, 6718-6725.   DOI   ScienceOn
85 Ribon, V., Johnson, J. H., Camp, H. S. and Saltiel, A. R. (1998) Thiazolidinediones and insulin resistance: peroxisome proliferator activated receptor g activation stimulates expression of the CAP gene. Proc. Natl. Acad. Sci. U.S.A. 95, 14751-14756.   DOI   ScienceOn
86 Rangwala, S. M. and Lazar, M. A. (2004) Peroxisome proliferator-activated receptor gamma in diabetes and metabolism. Trends Pharmacol. Sci. 25, 331-336.   DOI   ScienceOn
87 He, W., Barak, Y., Hevener, A., Olson, P., Liao, D., Le, J., Nelson, M., Ong, E., Olefsky, J. M. and Evans, R. M. (2003) Adipose-specific peroxisome proliferator-activated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle. Proc. Natl. Acad. Sci. U.S.A. 100, 15712-15717.   DOI   ScienceOn
88 Chao, L., Marcus-Samuels, B., Mason, M. M., Moitra, J., Vinson, C., Arioglu, E., Gavrilova, O. and Reitman, M. L. (2000) Adipose tissue is required for the antidiabetic, but not for the hypolipidemic, effect of thiazolidinediones. J. Clin. Invest. 106, 1221-1228.   DOI   ScienceOn
89 Matsusue, K., Haluzik, M., Lambert, G., Yim, S. H., Gavrilova, O., Ward, J. M., Brewer, B., Jr., Reitman, M. L. and Gonzalez, F. J. (2003) Liverspecific disruption of PPARgamma in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes. J. Clin. Invest. 111, 737-747.   DOI   ScienceOn
90 Ye, J. M., Dzamko, N., Cleasby, M. E., Hegarty, B., D., Furler, S. M., Cooney, G. J. and Kraegen, E. W. (2004) Direct demonstration of lipid sequestration as a mechanism by which rosiglitazone prevents fatty-acid-induced insulin resistance in the rat: comparison with metformin. Diabetologia 47, 1306-1313.   DOI
91 Burant, C. F., Sreenan, S., Hirano, K., Tai, T. A., Lohmiller, J., Lukens, J., Davidson, N. O., Ross, S. and Graves, R. A. (1997) Troglitazone action is independent of adipose tissue. J. Clin. Invest. 100, 2900-2908.   DOI   ScienceOn
92 Tanaka, T., Yamamoto, J., Iwasaki, S., Asaba, H., Hamura, H., Ikeda, Y., Watanabe, M., Magoori, K., Ioka, R. X., Tachibana, K., Watanabe, Y., Uchiyama, Y., Sumi, K., Iguchi, H., Ito, S., Doi, T., Hamakubo, T., Naito, M., Auwerx, J., Yanagisawa, M., Kodama, T. and Sakai, J. (2003) Activation of peroxisome proliferator-activated receptor delta induces fatty acid beta-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc. Natl. Acad. Sci. U.S.A. 100, 15924-15929.   DOI   ScienceOn
93 Kubota, N., Terauchi, Y., Miki, H., Tamemoto, H., Yamauchi, T., Komeda, K., Satoh, S., Nakano, R., Ishii, C., Sugiyama, T., Eto, K., Tsubamoto, Y., Okuno, A., Murakami, K., Sekihara, H., Hasegawa, G., Naito, M., Toyoshima, Y., Tanaka, S., Shiota, K., Kitamura, T., Fujita, T., Ezaki, O., Aizawa, S., Nagai,, R., Tobe, K., Kimura, S. and Kadowaki T. (1999) PPARgamma mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance. Mol. Cell 4, 597-609.   DOI   ScienceOn
94 Norris, A. W., Chen, L., Fisher, S. J., Szanto, I., Ristow, M., Jozsi, A. C., Hirshman, M. F., Rosen, E. D., Goodyear, L. J., Gonzalez, F. J., Spiegelman, B. M. and Kahn, C. R. (2003) Muscle-specific PPARgamma-deficient mice develop increased adiposity and insulin resistance but respond to thiazolidinediones. J. Clin. Invest. 112, 608-618.   DOI   ScienceOn
95 Mayerson, A. B., Hundal, R. S., Dufour, S., Lebon, V., Befroy, D., Cline, G. W., Enocksson, S., Inzucchi, S. E., Shulman, G. I. and Petersen, K. F. (2002) The effects of rosiglitazone on insulin sensitivity, lipolysis, and hepatic and skeletal muscle triglyceride content in patients with type 2 diabetes. Diabetes 51, 797-802.   DOI   ScienceOn
96 Yamauchi, T., Kamon, J., Waki, H., Terauchi, Y., Kubota, N., Hara, K., Mori, Y., Ide, T., Murakami, K., Tsuboyama-Kasaoka, N., Ezaki, O., Akanuma, Y., Gavrilova, O., Vinson, C., Reitman, M. L., Kagechika, H., Shudo, K., Yoda, M., Nakano, Y., Tobe, K., Nagai, R., Kimura, S., Tomita, M., Froguel, P. and Kadowaki, T. (2001) The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med. 7, 941-946.   DOI   ScienceOn
97 Hu, E. D., Kim, J. B., Sarraf, P. and Spiegelman, B. M. (1996) Inhibition of adipogenesis through MAP kinase mediated phosphorylation of PPAR gamma. Science 274, 2100-2103.   DOI   ScienceOn
98 Wang, C., Tian, L., Popov, V. M. and Pestell, R. G. (2011) Acetylation and nuclear receptor action. J. Steroid Biochem. Mol. Biol. 123, 91-100.   DOI   ScienceOn
99 Petrovic, N., Walden, T. B., Shabalina, I. G., Timmons, J. A., Cannon, B. and Nedergaard, J. (2010) Chronic peroxisome proliferator-activated receptor $\gamma$ ($PPAR{\gamma}$) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J. Biol. Chem. 285, 7153-7164.   DOI   ScienceOn