Screening of Antioxidative, Anti-platelet Aggregation and Anti-thrombotic Effects of Clove Extracts

정향 추출물의 항산화.항혈소판 응집효과 및 혈전 용해능 탐색

  • Yang, Young-Yi (Department of Diagnostics College of Oriental Medicine, Dongguk University) ;
  • Lee, Min-Ja (Institute of Oriental Medicine, College of Oriental Medicine, Dongguk University) ;
  • Lee, Hye-Sook (Department of Diagnostics College of Oriental Medicine, Dongguk University) ;
  • Park, Won-Hwan (Department of Diagnostics College of Oriental Medicine, Dongguk University)
  • 양영이 (동국대학교 한의과대학 진단학교실) ;
  • 이민자 (동국대학교 한의과대학 한의학연구소) ;
  • 이혜숙 (동국대학교 한의과대학 진단학교실) ;
  • 박원환 (동국대학교 한의과대학 진단학교실)
  • Received : 2011.02.09
  • Accepted : 2011.04.11
  • Published : 2011.06.25

Abstract

Clove has been frequently used as anti-diabetic, anti-microbial, anti-inflammatory, anesthetic drug and remedies for stomachache by coldness. In this study, the antioxidant activity of extract from Clove was studied in vitro methods by measuring the antioxidant activity by TEAC, measuring the scavenging effects on reactive oxygen species (ROS) [superoxide anion, hydroxyl radical] and on reactive nitrogen species (RNS) [nitric oxide and peroxynitrite] as well as measuring the inhibitory effect on $Cu^{2+}$-induced human LDL oxidation. Anti-platelet aggregation and anti-thrombotic effects of Clove extracts were studied ex vivo methods by mesuring the inhibitory effect on thrombin induced platelet aggregation and the fibrinolytic activity. The Clove extracts were found to have a potent scavenging activity, as well as an inhibitory effect on LDL oxidation in vitro. Moreover Clove extracts were exhibited remarkable inhibitory effect on platelet aggregation and fibrinolytic activity. In conclusion, the Clove extracts have anti-oxidative and anti-atherosclerotic effects in vitro and ex vivo system, which can be used for developing pharmaceutical drug against oxidative stress and atherosclerosis.

Keywords

References

  1. 2009년 사망원인 통계 결과, 통계청.
  2. Vranova, E., Inze, D., Van Breusegem, F. Signal transduction during oxidative stress. J Exp Bot. 53(372):1227-1236, 2002. https://doi.org/10.1093/jexbot/53.372.1227
  3. Finkel, T., Holbrook, N.J. Oxidants, oxidative stress and the biology of ageing. Nature 408(6809):239-247, 2000. https://doi.org/10.1038/35041687
  4. Sies, H. Oxidative stress: from basic research to clinical application. Am J Med. 30: 31S-38S, 1991.
  5. Wolberg, A.S., Campbell, R.A. Thrombin generation, fibrin clot formation and hemostasis. Transfus Apher Sci. 38(1):15-23, 2008. https://doi.org/10.1016/j.transci.2007.12.005
  6. Mizuno, T., Sugimoto, M., Matsui, H., Hamada, M., Shida, Y., Yoshioka, A. Visual evaluation of blood coagulation during mural thrombogenesis under high shear blood flow. Thromb Res. 121(6):855-864, 2008. https://doi.org/10.1016/j.thromres.2007.07.019
  7. Wolberg, A.S. Thrombin generation and fibrin clot structure. Blood Rev. 21(3):131-142, 2007. https://doi.org/10.1016/j.blre.2006.11.001
  8. Burggraf, D., Vosko, M.R., Schubert, M., Stassen, J.M., Hamann, G.F. Different therapy options protecting microvasculature after experimental cerebral ischaemia and reperfusion. Thromb Haemost. 103(5):891-900, 2010. https://doi.org/10.1160/TH09-07-0500
  9. Swenson, S., Markland Jr, F.S. Snake venom fibrin(ogen)olytic enzymes. Toxicon. 45(8):1021-1039, 2005. https://doi.org/10.1016/j.toxicon.2005.02.027
  10. Mine, Y., Wong, A.H.K., Jiang, B. Fibrinolytic enzymes in Asian traditional fermented foods. Food Res Int. 38(3):243-250, 2005. https://doi.org/10.1016/j.foodres.2004.04.008
  11. 한방약리학 교재편찬위원회. 한방약리학. 2nd ed. 신일상사. pp 608-610, 2006.
  12. 허 준. 동의보감. 1st ed. 법인 문화사. 3588, 2005.
  13. Chaieb, K., Zmantar, T., Ksouri, R., Hajlaoui, H., Mahdouani, K., Abdelly, C., Bakhrouf, A. Antioxidant properties of the essential oil of Eugenia caryophyllata and its antifungal activity against a large number of clinical Candida species. Mycoses 50(5):403-406, 2007. https://doi.org/10.1111/j.1439-0507.2007.01391.x
  14. Prasad, R.C., Herzog, B., Boone, B., Sims, L., Waltner-Law, M. An extract of Syzygium aromaticum represses genes encoding hepatic gluconeogenic enzymes. J Ethnopharmacol. 96: 295-301, 2005. https://doi.org/10.1016/j.jep.2004.09.024
  15. Prasad, N.S., Raghavendra, R., Lokesh, B.R., Naidu, KAKA. Spice phenolics inhibit human PMNL 5-lipoxygenase. Prostaglandins Leukot Essent Fatty Acids 70: 521-528, 2004. https://doi.org/10.1016/j.plefa.2003.11.006
  16. Damiani, C.E.N., Rossoni, L.V., Vassallo, D.V. Vasorelaxant effects of eugenol on rat thoracic aorta. Vascul Pharmacol. 40: 59-66, 2003. https://doi.org/10.1016/S1537-1891(02)00311-7
  17. Cooke, S.J., Suski, C.D., Ostrand, K.G., Tufts, B.L., Wahl, D.H. Behavioral and physiological assessment of low concentrations of clove oil anaesthetic for handling and transporting largemouth bass (Micropterus salmoides). Aquaculture 239: 509-529, 2004. https://doi.org/10.1016/j.aquaculture.2004.06.028
  18. Mytle, N., Anderson, G.L., Doyle, M.P., Smith, M.A. Antimicrobial activity of clove (Syzgium aromaticum) oil in inhibiting Listeria monocytogenes on chicken frankfurters. Food Control. 17: 102-107, 2006. https://doi.org/10.1016/j.foodcont.2004.09.008
  19. Gowda, N.K.S., Malathi, V., Suganthi, R.U. Effect of some chemical and herbal compounds on growth of Aspergillus parasiticus and aflatoxin production. Anim Feed Sci Technol. 116: 281-291, 2004. https://doi.org/10.1016/j.anifeedsci.2004.02.008
  20. Kim, S.I., Yi, J.H., Tak, J.H., Ahn, Y.J. Acaricidal activity of plant essential oils against Dermanyssus gallinae (Acari: Dermanyssidae). Vet Parasitol. 120: 297-304, 2004. https://doi.org/10.1016/j.vetpar.2003.12.016
  21. Kujala, T.S., Loponen, J.M., Klika, K.D., Pihlaja, K. Phenolic and betacyanins in red beetroot (Beta vulgaris) root: distribution and effects of cold storage on the content of total phenolics and three individual compounds. J Agri Food Chem. 48: 5338-5342, 2000. https://doi.org/10.1021/jf000523q
  22. Roberta, R.E., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 26: 1231-1237, 1999. https://doi.org/10.1016/S0891-5849(98)00315-3
  23. Miller, N.J., Rice-Evans, C., Davies, M.J., Gopinathan, V., Milner, A.A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin Sci. 84: 407-412, 1993. https://doi.org/10.1042/cs0840407
  24. Blois, M.S. Antioxidant determination by the use of stable free radical. Nature 26: 1199-1200, 1958.
  25. Gotoh, N., Niki, E. Rates of interactions of superoxide with vitamin E, vitamin C and related compounds as measured by chemiluminescence. Biochem Biophys Acta 1115: 201-207, 1992. https://doi.org/10.1016/0304-4165(92)90054-X
  26. Halliwell, B., Gutteridge, J.M. Role of free radicals and catalytic metalions in human disease: an overview. Method Enzymol. 186: 1-85, 1990.
  27. Nagata, N., Momose, K., Ishida, Y. Inhibitory effects of catecholamines and anti-oxidants on the fluorescence reactionof 4,5-diaminofluorescein, DAF-2, a novel indicator of nitric oxide. J Biochem. (Tokyo) 125: 658-661, 1999. https://doi.org/10.1093/oxfordjournals.jbchem.a022333
  28. Crow, J.P. Dichlorodihydrofluorescein and dihydrorhodamine 123 are sensitive indicators of peroxynitrite in vitro: implications for intracellular measurement of reactive nitrogen and oxygen species. Nitric Oxide, 1: 145-157, 1997. https://doi.org/10.1006/niox.1996.0113
  29. Yoon, M.A., Jeong, T.S., Park, D.S., Xu, M.Z., Oh, H.W., Song, K.B., Lee, W.S., Park, H.Y. Antioxidant effect of quinoline alkaloid and 2,4-di-tert-butylphenol isolated from Scolopendra subspinipes. Biol Pharm Bull. 29: 735-739, 2006. https://doi.org/10.1248/bpb.29.735
  30. Yagi, K.A. Simple fluometric assay for lipoperoxide in blood plasma. Biochem Med. 15: 212-216, 1976. https://doi.org/10.1016/0006-2944(76)90049-1
  31. Astrup, T., Mullertz, S. The fibrin method for estimating of fibrinolytic activity. Arch. Biochem Biophys. 40: 346-351, 1952. https://doi.org/10.1016/0003-9861(52)90121-5
  32. Maisuthisakul, P., Suttajit, M., Pongsawatmanit, R. Assessment of phenolic content and free radical-scavenging capacity of some Thai indigenous plants. Food Chem. 100(4):1409-1418, 2007. https://doi.org/10.1016/j.foodchem.2005.11.032
  33. Awika, J.M., Rooney, L.W., Wu, X.L., Prior, R.L., Cisneros-Zevallos, L. Screening methods to measure antioxidant activity of sorghum (Sorghum bicolor) and sorghum products. J Agric Food Chem. 51: 6657-6662, 2003. https://doi.org/10.1021/jf034790i
  34. Rice-Evans, C., Miller, N., Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med. 20: 933-956, 1996. https://doi.org/10.1016/0891-5849(95)02227-9
  35. Fogliano, V., Verde, V., Randazzo, G., Ritieni, A. Method for measuring antioxidant activity and its application to monitoring the antioxidant capacity of wines. J Agric Food Chem. 47: 1035-1040, 1999. https://doi.org/10.1021/jf980496s
  36. 남석현, 강미영. 한약재 열수추출물의 항산화효과 검정. 한국농화학회지 43: 141-147, 2000.
  37. Sanchez, C.S., Gonzalez, A.M.T., Garcia-Parrilla, M.C., Granados, J.J.Q., Serrana, H.L.G., Martinez, M.C.L. Different radical scavenging tests in virgin olive oil and their relation to the total phenol content. Anal Chim Acta 593: 103-107, 2007. https://doi.org/10.1016/j.aca.2007.04.037
  38. Magalhaes, L.M., Segundo, M.A., Reis, S. Automatic method for determination of total antioxidant capacity using 2,2-diphenyl-1-picrylhydrazyl assay. Anal Chim Acta 558: 310-318, 2006. https://doi.org/10.1016/j.aca.2005.11.013
  39. Wrona, M., Patel, K., Wardman, P. Reactivity of 2',7'-dichloro dihydro fluorescein and dihydrorhodamine 123 and their oxidized forms toward carbonate, nitrogen dioxide, and hydroxyl radicals. Free Radic Biol Med. 38(2):262-270, 2005. https://doi.org/10.1016/j.freeradbiomed.2004.10.022
  40. Patel, R.P., McAndrew, J., Sellak, H., White, C.R., Jo, H., Freeman, B.A., Darley-Usmar, V.M. Biological aspects of reactive nitrogen species. Biochim Biophys Acta 1411: 385-400, 1999. https://doi.org/10.1016/S0005-2728(99)00028-6
  41. Virag, L., Szabo, E., Gergely, P., Szabo, C. Peroxynitrite induced cytotoxicity: metabolism and opportunities for intervention. Toxocol Lett. 140-141: 113-124, 2003. https://doi.org/10.1016/S0378-4274(02)00508-8
  42. Rubbo, H., O'Donnell, V. Nitric oxide, peroxynitrite and lipoxygenase in atherogenesis: mechanistic insights. Toxicology 208: 273-288, 2005. https://doi.org/10.1016/j.tox.2004.11.023
  43. Raya, A.A., Raya, S.A. Inflammation: A pivotal link between autoimmune diseases and atherosclerosis. Autoimmun Rev. 5: 331-337, 2006. https://doi.org/10.1016/j.autrev.2005.12.006
  44. Li, F., Dara, G., Jamieson, D.C., Usher, E.L. Gene expression of apolipoprotein(a) within the wall of human aorta and carotid arteries. Atherosclerosis 158(2):303-311, 2001. https://doi.org/10.1016/S0021-9150(01)00443-9
  45. Meng, Q., Lewis, P., Wahala, K., Adlercreutz, H., Tikkanen. Incorporation of esterified soybean isoflavone with antioxidant activity into low density lipoprotein. Biochim Biophys Acta 1438: 369-376, 1996.
  46. Katsube, T., Imawaka, N., Kawano, Ya., Yamazaki, Y., Shiwaku, K., Yamane, Y. Antioxidant flavonol glycosides in mulberry (Morus alba L.) leaves isolated based on LDL antioxidant activity. Food Chem. 97(1):25-31, 2006. https://doi.org/10.1016/j.foodchem.2005.03.019
  47. Verstraeta, M., Lijnen, H.R., Collen, D. Thrombolytic agents in development. Drugs 50: 29-42, 1995. https://doi.org/10.2165/00003495-199550010-00003
  48. Fujita, M., Hong, K., Ito, Y., Fujii, R., Kariya, K., Nishimuro, S. Thrombolytic effect of nattokinase on a chemically induced thrombosis model in rat. Biol Pharm Bull. 18: 1387-1391, 1995. https://doi.org/10.1248/bpb.18.1387
  49. Magalhaes, A., Magalhaes, H.P.B., Richardson, M., Gontijo, S., Ferreira, R.N., Almeida, A.P., Sanchez, E.F. Purification and properties of a coagulant thrombin-like enzyme from the venom of Bothrops leucurus. Comp Biochem Physiol A Mol Integr Physiol. 146(4):565-575, 2007. https://doi.org/10.1016/j.cbpa.2005.12.033
  50. Oliveira-Carvalho, A.L., Guimaraes, P.R., Abreu, P.A., Dutra, D.L.S., Junqueira-de-Azevedo, I.L.M., Rodrigues, C.R., Ho, P.L., Castro, H.C., Zingali, R.B. Identification and characterization of a new member of snake venom thrombin inhibitors from Bothrops insularis using a proteomic approach. Toxicon. 51(4):659-671, 2008. https://doi.org/10.1016/j.toxicon.2007.11.026
  51. Jones, M.N., Holt, R.G. Activation of plasminogen by Streptococcus mutans. Biochem Biophys Res Commun. 322(1):37-41, 2004. https://doi.org/10.1016/j.bbrc.2004.07.077
  52. Matsubara, K., Hori, K., Matsuura, Y., Miyazawa, K. Purification and characterization of a fibrinolytic enzyme and identification of fibrinogen clotting enzyme in a marine green alga, Codium divaricatum. Comp Biochem Physiol B Biochem Mol Biol. 125(1):137-143, 2000. https://doi.org/10.1016/S0305-0491(99)00161-3
  53. Chudzinski-Tavassi, A.M., Kelen, E.M., Paula-Rosa, A.P., Loyau, S., Sampaio, C.A., Bon, C., Angles-Cano, E. Fibrino(geno)lytic properties of purified hementerin, a metallo-proteinase from the leech Haementeria depressa, Thromb. Haemost 80: 155-160, 1998. https://doi.org/10.1055/s-0037-1615155
  54. Ge, T., Sun, Z.J., Fu, S.H., Liang, G.D. Cloning of thrombolytic enzyme (lumbrokinase) from earthworm and its expression in the yeast Pichia pastoris. Protein Expr Purif. 42(1):20-28, 2005. https://doi.org/10.1016/j.pep.2005.04.005
  55. Chen, H., Takahashi, S., Imamura, M., Okutani, E., Zhang, Z.G., Chayama, K., Chen, B.A. Earthworm fibrinolytic enzyme: anti-tumor activity on human hepatoma cells in vitro and in vivo. Chin Med J (Engl). 120(10):898-904, 2007.
  56. Hahn, B.S., Wu, S.J., Kim, S.W., Kim, Y.S. Evaluation of anticoagulant fibrinolytic activities from crude extracts of insects. Kor J Pharmacogn. 30: 409-412, 1999.