Browse > Article
http://dx.doi.org/10.4062/biomolther.2021.131

Knockdown of LKB1 Sensitizes Endometrial Cancer Cells via AMPK Activation  

Rho, Seung Bae (Division of Translational Science, Research Institute, National Cancer Center)
Byun, Hyun Jung (BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University)
Kim, Boh-Ram (BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University)
Lee, Chang Hoon (BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University)
Publication Information
Biomolecules & Therapeutics / v.29, no.6, 2021 , pp. 650-657 More about this Journal
Abstract
Metformin is an anti-diabetic drug and has anticancer effects on various cancers. Several studies have suggested that metformin reduces cell proliferation and stimulates cell-cycle arrest and apoptosis. However, the definitive molecular mechanism of metformin in the pathophysiological signaling in endometrial tumorigenesis and metastasis is not clearly understood. In this study, we examined the effects of metformin on the cell viability and apoptosis of human cervical HeLa and endometrial HEC-1-A and KLE cancer cells. Metformin suppressed cell growth in a dose-dependent manner and dramatically evoked apoptosis in HeLa cervical cancer cells, while apoptotic cell death and growth inhibition were not observed in endometrial (HEC-1-A, KLE) cell lines. Accordingly, the p27 and p21 promoter activities were enhanced while Bcl-2 and IL-6 activities were significantly reduced by metformin treatment. Metformin diminished the phosphorylation of mTOR, p70S6K and 4E-BP1 by accelerating adenosine monophosphate-activated kinase (AMPK) in HeLa cancer cells, but it did not affect other cell lines. To determine why the anti-proliferative effects are observed only in HeLa cells, we examined the expression level of liver kinase B1 (LKB1) since metformin and LKB1 share the same signalling system, and we found that the LKB1 gene is not expressed only in HeLa cancer cells. Consistently, the overexpression of LKB1 in HeLa cancer cells prevented metformin-triggered apoptosis while LKB1 knockdown significantly increased apoptosis in HEC-1-A and KLE cancer cells. Taken together, these findings indicate an underlying biological/physiological molecular function specifically for metformin-triggered apoptosis dependent on the presence of the LKB1 gene in tumorigenesis.
Keywords
Metformin; LKB1; AMPK; HeLa; Endometrial cancer; Apoptosis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lengyel, E., Litchfield, L. M., Mitra, A. K., Nieman, K. M., Mukherjee, A., Zhang, Y., Johnson, A., Bradaric, M., Lee, W. and Romero, I. L. (2015) Metformin inhibits ovarian cancer growth and increases sensitivity to paclitaxel in mouse models. Am. J. Obstet. Gynecol. 212, 479.e1-479.e10.
2 Li, M., Li, X., Zhang, H. and Lu, Y. (2018) Molecular mechanisms of metformin for diabetes and cancer treatment. Front. Physiol. 9, 1039.   DOI
3 Mallik, R. and Chowdhury, T. A. (2018) Metformin in cancer. Diabetes Res. Clin. Pract. 143, 409-419.   DOI
4 Nangia-Makker, P., Yu, Y., Vasudevan, A., Farhana, L., Rajendra, S. G., Levi, E. and Majumdar, A. P. (2014) Metformin: a potential therapeutic agent for recurrent colon cancer. PLoS ONE 9, e84369.   DOI
5 Loubiere, C., Clavel, S., Gilleron, J., Harisseh, R., Fauconnier, J., BenSahra, I., Kaminski, L., Laurent, K., Herkenne, S., Lacas-Gervais, S., Ambrosetti, D., Alcor, D., Rocchi, S., Cormont, M., Michiels, J. F., Mari, B., Mazure, N. M., Scorrano, L., Lacampagne, A., Gharib, A., Tanti, J. F. and Bost, F. (2017) The energy disruptor metformin targets mitochondrial integrity via modification of calcium flux in cancer cells. Sci. Rep. 7, 5040.   DOI
6 Ben Sahra, I., Laurent, K., Loubat, A., Giorgetti-Peraldi, S., Colosetti, P., Auberger, P., Tanti, J. F., Le Marchand-Brustel, Y. and Bost, F. (2008) The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level. Oncogene 27, 3576-3586.   DOI
7 Rho, S. B., Song, Y. J., Lim, M. C., Lee, S. H., Kim, B. R. and Park, S. Y. (2012) Programmed cell death 6 (PDCD6) inhibits angiogenesis through PI3K/mTOR/p70S6K pathway by interacting of VEG-FR-2. Cell. Signal. 24, 131-139.   DOI
8 Lei, Y., Yi, Y., Liu, Y., Liu, X., Keller, E. T., Qian, C. N., Zhang, J. and Lu, Y. (2017) Metformin targets multiple signaling pathways in cancer. Chin. J. Cancer 36, 17.   DOI
9 Algire, C., Zakikhani, M., Blouin, M. J., Shuai, J. H. and Pollak, M. (2008) Metformin attenuates the stimulatory effect of a high-energy diet on in vivo LLC1 carcinoma growth. Endocr. Relat. Cancer 15, 833-839.   DOI
10 Barriere, G., Tartary, M. and Rigaud, M. (2013) Metformin: a rising star to fight the epithelial mesenchymal transition in oncology. Anticancer Agents Med. Chem. 13, 333-340.   DOI
11 Triggle, C. R. and Ding, H. (2017) Metformin is not just an antihyperglycaemic drug but also has protective effects on the vascular endothelium. Acta Physiol. 219, 138-151.   DOI
12 Li, J., Zhong, L., Wang, F. and Zhu, H. (2017) Dissecting the role of AMP-activated protein kinase in human diseases. Acta Pharm. Sin. B 7, 249-259.   DOI
13 Qu, C., Zhang, W., Zheng, G., Zhang, Z., Yin, J. and He, Z. (2014) Metformin reverses multidrug resistance and epithelial-mesenchymal transition (EMT) via activating AMP-activated protein kinase (AMPK) in human breast cancer cells. Mol. Cell. Biochem. 386, 63-71.   DOI
14 Shaw, R. J., Kosmatka, M., Bardeesy, N., Hurley, R. L., Witters, L. A., DePinho, R. A. and Cantley, L. C. (2004) The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc. Natl. Acad. Sci. U.S.A. 101, 3329-3335.   DOI
15 Wang, W. and Guan, K. L. (2009) AMP-activated protein kinase and cancer. Acta Physiol. 196, 55-63.   DOI
16 Zhang, Y., Storr, S. J., Johnson, K., Green, A. R., Rakha, E. A., Ellis, I. O., Morgan, D. A. and Martin, S. G. (2014) Involvement of metformin and AMPK in the radioresponse and prognosis of luminal versus basal-like breast cancer treated with radiotherapy. Oncotarget 5, 12936-12949.   DOI
17 Zhao, D., Long, X. D., Lu, T. F., Wang, T., Zhang, W. W., Liu, Y. X., Cui, X. L., Dai, H. J., Xue, F. and Xia, Q. (2015) Metformin decreases IL-22 secretion to suppress tumor growth in an orthotopic mouse model of hepatocellular carcinoma. Int. J. Cancer 136, 2556-2565.   DOI
18 Zi, F. M., He, J. S., Li, Y., Wu, C., Yang, L., Yang, Y., Wang, L. J., He, D. H., Zhao, Y., Wu, W. J., Zheng, G. F., Han, X. Y., Huang, H., Yi, Q. and Cai, Z. (2015) Metformin displays anti-myeloma activity and synergistic effect with dexamethasone in in vitro and in vivo xenograft models. Cancer Lett. 356, 443-453.   DOI
19 Ben Sahra, I., Le Marchand-Brustel, Y., Tanti, J. F. and Bost, F. (2010) Metformin in cancer therapy: a new perspective for an old antidiabetic drug? Mol. Cancer Ther. 9, 1092-1099.   DOI
20 Fogarty, S., Ross, F. A., Vara Ciruelos, D., Gray, A., Gowans, G. J. and Hardie, D. G. (2016) AMPK causes cell cycle arrest in LKB1-deficient cells via activation of CAMKK2. Mol. Cancer Res. 14, 683-695.   DOI
21 Yuan, H. X., Xiong, Y. and Guan, K. L. (2013) Nutrient sensing, metabolism, and cell growth control. Mol. Cell 49, 379-387.   DOI
22 Zhang, J., Xu, H., Zhou, X., Li, Y., Liu, T., Yin, X. and Zhang, B. (2017) Role of metformin in inhibiting estrogen-induced proliferation and regulating ERalpha and ERbeta expression in human endometrial cancer cells. Oncol. Lett. 14, 4949-4956.   DOI
23 Zhu, Z., Jiang, T., Suo, H., Xu, S., Zhang, C., Ying, G. and Yan, Z. (2021) Metformin potentiates the effects of anlotinib in NSCLC via AMPK/mTOR and ROS-mediated signaling pathways. Front. Pharmacol. 12, 712181.   DOI
24 Gotlieb, W. H., Saumet, J., Beauchamp, M. C., Gu, J., Lau, S., Pollak, M. N. and Bruchim, I. (2008) In vitro metformin anti-neoplastic activity in epithelial ovarian cancer. Gynecol. Oncol. 110, 246-250.   DOI
25 Chen, X., Li, K. and Zhao, G. (2018) propofol inhibits hela cells by impairing autophagic flux via AMP-activated protein kinase (AMPK) activation and endoplasmic reticulum stress regulated by calcium. Med. Sci. Monit. 24, 2339-2349.   DOI
26 Evans, J. M., Donnelly, L. A., Emslie-Smith, A. M., Alessi, D. R. and Morris, A. D. (2005) Metformin and reduced risk of cancer in diabetic patients. BMJ 330, 1304-1305.   DOI
27 Fasih, A., Elbaz, H. A., Huttemann, M., Konski, A. A. and Zielske, S. P. (2014) Radiosensitization of pancreatic cancer cells by metformin through the AMPK pathway. Radiat. Res. 182, 50-59.   DOI
28 Sanli, T., Rashid, A., Liu, C., Harding, S., Bristow, R. G., Cutz, J. C., Singh, G., Wright, J. and Tsakiridis, T. (2010) Ionizing radiation activates AMP-activated kinase (AMPK): a target for radiosensitization of human cancer cells. Int. J. Radiat. Oncol. Biol. Phys. 78, 221-229.   DOI
29 Green, A. S., Chapuis, N., Lacombe, C., Mayeux, P., Bouscary, D. and Tamburini, J. (2011) LKB1/AMPK/mTOR signaling pathway in hematological malignancies: from metabolism to cancer cell biology. Cell Cycle 10, 2115-2120.   DOI
30 Brancher, S., Stoer, N. C., Weiderpass, E., Damhuis, R. A., Johannesen, T. B., Botteri, E. and Strand, T. E. (2021) Metformin use and lung cancer survival: a population-based study in Norway. Br. J. Cancer 124, 1018-1025.   DOI
31 Shaw, R. J., Lamia, K. A., Vasquez, D., Koo, S. H., Bardeesy, N., Depinho, R. A., Montminy, M. and Cantley, L. C. (2005) The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310, 1642-1646.   DOI
32 Steinberg, G. R. and Kemp, B. E. (2009) AMPK in health and disease. Physiol. Rev. 89, 1025-1078.   DOI
33 Sun, Y., Connors, K. E. and Yang, D. Q. (2007) AICAR induces phosphorylation of AMPK in an ATM-dependent, LKB1-independent manner. Mol. Cell. Biochem. 306, 239-245.   DOI
34 Towler, M. C. and Hardie, D. G. (2007) AMP-activated protein kinase in metabolic control and insulin signaling. Circ. Res. 100, 328-341.   DOI
35 Uehara, T., Mitsuhashi, A., Tsuruoka, N. and Shozu, M. (2015) Metformin potentiates the anticancer effects of cisplatin under normoxic conditions in vitro. Oncol. Rep. 33, 744-750.   DOI
36 Vial, G., Detaille, D. and Guigas, B. (2019) Role of mitochondria in the mechanism(s) of action of metformin. Front. Endocrinol. 10, 294.   DOI
37 Herrero-Martin, G., Hoyer-Hansen, M., Garcia-Garcia, C., Fumarola, C., Farkas, T., Lopez-Rivas, A. and Jaattela, M. (2009) TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cells. EMBO J. 28, 677-685.   DOI
38 Garcia, D. and Shaw, R. J. (2017) AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol. Cell 66, 789-800.   DOI
39 Byun, H. J., Kim, B. R., Yoo, R., Park, S. Y. and Rho, S. B. (2012) sMEK1 enhances gemcitabine anti-cancer activity through inhibition of phosphorylation of Akt/mTOR. Apoptosis 17, 1095-1103.   DOI
40 Gou, S., Cui, P., Li, X., Shi, P., Liu, T. and Wang, C. (2013) Low concentrations of metformin selectively inhibit CD133(+) cell proliferation in pancreatic cancer and have anticancer action. PLoS ONE 8, e63969.   DOI
41 Suh, D. H., Lee, S., Park, H. S. and Park, N. H. (2020) Medroxyprogesterone reverses tolerable dose metformin-induced inhibition of invasion via matrix metallopeptidase-9 and transforming growth factor-β1 in KLE endometrial cancer cells. J. Clin. Med. 9, 3585.   DOI
42 Xiao, X., He, Q., Lu, C., Werle, K. D., Zhao, R. X., Chen, J., Davis, B. C., Cui, R., Liang, J. and Xu, Z. X. (2012) Metformin impairs the growth of liver kinase B1-intact cervical cancer cells. Gynecol. Oncol. 127, 249-255.   DOI
43 Zakikhani, M., Dowling, R., Fantus, I. G., Sonenberg, N. and Pollak, M. (2006) Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells. Cancer Res. 66, 10269-10273.   DOI
44 Zhang, J. and Snyder, S. H. (1992) Nitric oxide stimulates auto-ADP-ribosylation of glyceraldehyde-3-phosphate dehydrogenase. Proc. Natl. Acad. Sci. U.S.A. 89, 9382-9385.   DOI
45 Hardie, D. G. (2011) AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev. 25, 1895-1908.   DOI
46 Buzzai, M., Jones, R. G., Amaravadi, R. K., Lum, J. J., DeBerardinis, R. J., Zhao, F., Viollet, B. and Thompson, C. B. (2007) Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res. 67, 6745-6752.   DOI
47 Dowling, R. J., Zakikhani, M., Fantus, I. G., Pollak, M. and Sonenberg, N. (2007) Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells. Cancer Res. 67, 10804-10812.   DOI
48 Liu, Y., Marks, K., Cowley, G. S., Carretero, J., Liu, Q., Nieland, T. J., Xu, C., Cohoon, T. J., Gao, P., Zhang, Y., Chen, Z., Altabef, A. B., Tchaicha, J. H., Wang, X., Choe, S., Driggers, E. M., Zhang, J., Bailey, S. T., Sharpless, N. E., Hayes, D. N., Patel, N. M., Janne, P. A., Bardeesy, N., Engelman, J. A., Manning, B. D., Shaw, R. J., Asara, J. M., Scully, R., Kimmelman, A., Byers, L. A., Gibbons, D. L., Wistuba, I. I., Heymach, J. V., Kwiatkowski, D. J., Kim, W. Y., Kung, A. L., Gray, N. S., Root, D. E., Cantley, L. C. and Wong, K. K. (2013) Metabolic and functional genomic studies identify deoxythymidylate kinase as a target in LKB1-mutant lung cancer. Cancer Discov. 3, 870-879.   DOI
49 Whang, Y. M., Park, S. I., Trenary, I. A., Egnatchik, R. A., Fessel, J. P., Kaufman, J. M., Carbone, D. P. and Young, J. D. (2016) LKB1 deficiency enhances sensitivity to energetic stress induced by erlotinib treatment in non-small-cell lung cancer (NSCLC) cells. Oncogene 35, 856-866.   DOI
50 Lee, B. B., Kim, Y., Kim, D., Cho, E. Y., Han, J., Kim, H. K., Shim, Y. M. and Kim, D. H. (2019) Metformin and tenovin-6 synergistically induces apoptosis through LKB1-independent SIRT1 downregulation in non-small cell lung cancer cells. J. Cell. Mol. Med. 23, 2872-2889.   DOI
51 Kang, S., Dong, S. M., Kim, B. R., Park, M. S., Trink, B., Byun, H. J. and Rho, S. B. (2012) Thioridazine induces apoptosis by targeting the PI3K/Akt/mTOR pathway in cervical and endometrial cancer cells. Apoptosis 17, 989-997.   DOI
52 Kang, G. J., Park, M. K., Byun, H. J., Kim, H. J., Kim, E. J., Yu, L., Kim, B., Shim, J. G., Lee, H. and Lee, C. H. (2020) SARNP, a participant in mRNA splicing and export, negatively regulates E-cadherin expression via interaction with pinin. J. Cell. Physiol. 235, 1543-1555.   DOI