• Title/Summary/Keyword: Anti-cancer agent

Search Result 450, Processing Time 0.023 seconds

Modulation of Cell Cycle Regulators by Sulforaphane in Human Mepatocarcinoma HepG2 Cells (HepG2 인체간암세포의 세포주기조절인자 발현에 미치는 sulforaphane의 영향)

  • Bae, Song-Ja;Kim, Gi-Young;Yoo, Young-Hyun;Choi, Byung-Tae;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.16 no.7 s.80
    • /
    • pp.1235-1242
    • /
    • 2006
  • Sulforaphane, an isothiocyanate derived from hydrolysis of glucoraphanin in broccoli and other cruciferous vegetables, was shown to induce phase II detoxification enzymes and inhibit chemically induced mammary tumors in rodents. Recently, sulforaphane is known to induce cell cycle arrest and apoptosis in human canter cells, however its molecular mechanisms are poorly understood. In tile present study, we demonstrated that sulforaphane acted to inhibit proliferation and induce morphological changes of human hepatocarcinoma HepG2 cells. Treatment of HepG2 cells with $10{\mu}M\;or\;15{\mu}M$ sulforaphane resulted in significant G2/M cell cycle arrest as determined by DNA flow cytometry. Moreover, $20{\mu}M$ sulforaphane significantly induced the population of sub-G1 cells suggesting that sulforaphane induced apoptosis. This anti-proliferative effect of sulforaphane was accompanied by a marked inhibition of ryclin A, cyclin 31 and Cdc2 protein. However, the levels of tumor suppressor p53 and Cdk inhibitor p21 mRNA and protein expression were significantly increased by sulforaphane treatment in a concentration-dependent manner. Although further studies are needed, the present work suggests that sulforaphane may be a potential rhemoprevetiveichemotherapeucc agent for the treatment of human cancer cells.

G1 Arrest of the Cell Cycle by Gomisin N, a Dibenzocyclooctadiene Lignan, Isolated from Schizandra chinensis Baill in Human Leukemia U937 Cells (오미자에서 분리된 dibenzocyclooctadiene lignan의 일종인 gomisin N에 의한 인체혈구암세포의 세포주기 G1 arrest 유발)

  • Park, Cheol;Hwang, Hye-Jin;Choi, Byung-Tae;Choi, Tae-Hyun;Kim, Byung-Woo;Choi, Young-Whan;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.20 no.7
    • /
    • pp.977-982
    • /
    • 2010
  • We investigated the anti-cancer effects of two dibenzocyclooctadiene lignans, gomisin A and gomisin N, isolated from Schizandra chinensis Baill, in human promyelocytic U937 cells. Gomisin N, but not gomisin A, inhibited cell growth in a concentration-dependent manner, which was associated with the induction of G1 arrest of the cell cycle. G1 arrest induced by gomisin N was correlated with down-regulation of cyclin E, cyclin-dependent kinase (Cdk) 2 and Cdk4, and a concomitant up-regulation of Cdk inhibitors such as p16 (INK4A) and p21 (WAF1/CIP1). Furthermore, gomisin N inhibited phosphorylation of retinoblastoma protein (pRB) and p130, and expression of transcription factor E2Fs. The results indicated that growth inhibition by gomisin N is related to cell cycle arrest at G1 in U937 cells and these findings suggest that gomisin N may be a useful chemotherapeutic agent.

Biotic and Abiotic Factors Affecting Homoharringtonine Contents of Cephalotaxus koreana Nakai (개비자나무의 homoharringtonine 함량에 영향을 미치는 생물 및 무생물적 환경인자)

  • Jung, Myung-Suk;Hyun, Jung-Oh;Lee, Uk;Baik, Eul-Sun
    • Korean Journal of Plant Resources
    • /
    • v.23 no.2
    • /
    • pp.172-178
    • /
    • 2010
  • This study was carried out to investigate abiotic and biotic environmental factors affecting homoharringtonine (HHT) contents of Cephalotaxus koreana, whereby, to provide basic information of high value-added industry production of HHT as a promising anti-cancer agent. For correlation between abiotic environmental factors (soil moisture, soil pH, habitat density and temperature) and HHT contents, the contents were highly correlated with soil moisture (0.77) and soil pH (-0.68). For multiple regression analysis of relationship between abiotic environmental factors (soil moisture and soil pH) and HHT contents, soil moisture appeared to be strongly affecting the contents relatively due to being significant at only its regression coefficient ($26.48^{***}$). For the effect of biotic environmental factors (damage index) affecting HHT contents, the contents was quadratic with equation of $H=278.23+1242D-398.87D^2$, also, damage index had strong effect on the contents. Finally, for the result of the most influencing an environmental factor on HHT contents, both damage index and soil moisture were suitable in second polynomial regression, also, damage index ($R^2=0.73^{***}$) was turned out to be more influencing factor than soil moisture ($R^2=0.67^{**}$) on HHT contents relatively. Therefore, we predict that HHT contents in the trees of Cephalotaxus koreana is produced as a chemical defense mechanism triggered by a stress-related damage of fungi or insects.

Da-125 a New Antitumor Agent, Inhibits Topoisomerase II as Topoisomerase Poison and DNA Intercalator Simultaneously

  • Seo, Jin-Wook;Lee, Hak-Sung;Lee, Min-Jun;Kim, Mi-Ra;Shin, Cha-Gyun
    • Archives of Pharmacal Research
    • /
    • v.27 no.1
    • /
    • pp.77-82
    • /
    • 2004
  • DA-125, a novel derivative of adriamycin, is known for its anti-cancer activity. In this study, the inhibitory mechanism of DA-125 on topoisomerase was investigated in the simian virus 40 (SV40) replicating CV-1 cell by studying the SV40 DNA replication intermediates and DNA-topoisomerase complexes. DNA-protein complexes that were formed in the drug-treated cells were quantitated by using a glass filter assay. SV40 DNA replication intermediates that were accumulated in the drug-treated CV-1 cell were analyzed in a high resolution gel. DA-125 did not accumulate B-dimers of SV40 DNA replication intermediates which were found in the adriamycin-treated CV-1 cells. DA-125 induced a dose-dependent formation of the DNA-protein complexes, while adriamycin did not. When adriamycin and etoposide (VP16) were added to the SV40-infected cells at the same time, adriamycin blocked the formation of the DNA-protein complexes induced by VP16 in a dose-dependent manner. However, DA-125 blocked the formation of the DNA-protein complexes induced by VP16 up to the maximum level of the DNA-protein complexes that were induced by DA-125 alone. Adriamycin and DA-125 did not inhibit the formation of the DNA-protein complexes that were caused by camptothecin, a known topoisomerase I poison. DA-125 is bifunctional in inhibiting topoisomerase II because it simultaneously has the properties of the topoisomerase II poison and the DNA intercalator. As a topoisomerase II poison, DA-125 alone induced dose-dependent formation of the DNA-protein complexes. However, as a DNA intercalator, it quantitatively inhibited the formation of the DNA-protein complexes induced by a strong topoisomerase II poison VP16. Furthermore considering that the levels of the DNA-protein complex induced by VP16 were decreased by DA-125 in terms of the topoisomerase II poison, we suggest that DA-125 has a higher affinity to the drug-binding sites of DNA than VP16 has.

Mesenchymal Stem Cell-derived Exosomes: Applications in Cell-free Therapy (중간엽줄기세포유래 엑소좀: 비세포치료제로서의 활용)

  • Heo, June Seok;Kim, Jinkwan
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.50 no.4
    • /
    • pp.391-398
    • /
    • 2018
  • Mesenchymal stem cells (MSCs) are an attractive resource for refractory patients because of their anti-inflammatory/immunomodulatory capability and multi-lineage differentiation potential. The transplantation of MSCs has led to positive results in preclinical and clinical application to various diseases, including autoimmune disease, cardiovascular disease, cancer, liver cirrhosis, and ischemic stroke. On the other hand, studies have shown that paracrine factors, not direct cell replacement for damaged cells or tissue, are the main contributors in MSC-based therapy. More recently, evidence has indicated that MSC-derived exosomes play crucial roles in regulating the paracrine factors that can mediate tissue regeneration via transferring nucleic acids, proteins, and lipids to the local microenvironment and cell-to-cell communication. The use of these exosomes is likely to be beneficial for the therapeutic application of MSCs because their use can avoid harmful effects, such as tumor formation involved in cell transplantation. Therefore, therapeutic applications using MSC-derived exosomes might be safe and efficient strategies for regenerative medicine and tissue engineering. This review summarizes the recent advances and provides a comprehensive understanding of the role of MSC-derived exosomes as a therapeutic agent.

Anticancer Effect of Novel Peptide from Abalone (Haliotis discus hannai) based on Next Generation Sequencing Data (차세대염기서열분석 데이터 기반으로 선별한 전복(Haliotis discus hannai) 유래 신규 펩타이드의 항암 효과)

  • Moon, Hyunhye;Hwang-bo, Jeon;Veerappan, Karpagam;Natarajan, Sathishkumar;Chung, Hoyong;Park, Junhyung
    • Journal of Marine Life Science
    • /
    • v.7 no.1
    • /
    • pp.15-20
    • /
    • 2022
  • Glioblastoma is one of the highly aggressive central nervous system tumors and it is difficult to treat owing its anatomical location. Peptides are novel class of drugs which has the potential to cross the blood brain barrier and exerts its anti-tumor activity. Here, we discovered a novel peptide from abalone (Haliotis discus hannai) next generation sequencing (NGS) data and tested its anticancer effect on glioblastoma cell line SNU-489. The anticancer activity was measured using a cytotoxicity assay in a time and dose-dependent manner. A concentration and time dependent increase in the cytotoxicity was seen in cells treated with the novel peptide. The highest cytotoxicity rate of about 67% was observed in SNU-489 cells treated with 200 µM peptide for 48 hrs. However, the cytotoxic effect was not or less observed in a normal skin cell line HaCaT at similar concentration, thus, evident of peptide's cell specific anticancer activity. In addition, the gene expression level of necroptosis-related genes was analyzed by qRT-PCR to elucidate the anticancer mechanism of the novel peptide. RIPK3 expression was significantly increased by 9.6-fold in 200 µM of novel peptide treatment group, and MLKL expression level was significantly elevated by 2-fold in 100 µM treated group compared to the control group. Therefore, this study confirmed that the novel abalone-derived peptide has anticancer potency, and it causes cancer cell death through the necroptosis mechanism. Collectively, these results suggest that the novel peptide could be candidate anticancer agent for the treatment of glioblastoma in the future.

Suppression of Helicobacter pylori-induced Angiogenesis by a Gastric Proton Pump Inhibitor (Proton Pump Inhibitor에 의한 Helicobacter pylori의 혈관형성 억제효과)

  • Jin, Sung-Ho;Lee, Hwa-Young;Kim, Dong-Kyu;Cho, Yong-Kwan;Hahm, Ki-Baik;Han, Sang-Uk
    • Journal of Gastric Cancer
    • /
    • v.5 no.3 s.19
    • /
    • pp.191-199
    • /
    • 2005
  • Background: Though infections of Helicobacter pylori (H. pylori) are closely associated with activation of host angiogenesis, the underlying mechanisms, as well as the strategy for its prevention, have not been identified. Here, we investigated a causal role of H. pylori infection in angiogenesis of gastric mucosa and a potent inhibitory effect of a gastric proton pump inhibitor (PPI) on the gastropathy. Materials and Methods: A comparative analysis of CD 34 expression in tissues obtained from 20 H. pylori-associated gastritis and 18 H. pylori-negative gastritis patients was performed. Expression of $HIF-1{\alpha}$ and VEGF were tested by using RT-PCR. To evaluate the direct effect of H. pylori infection on differentiation of endothelial HUVEC cells, we carried out an in vitro angiogenesis assay. Results: H. pyfori-associated gastritis tissues showed significantly higher density of $CD34^+$ blood vessels than did H. pylori-negative gastritis tissues, and the levels were well correlated with expressions of $HIF-1{\alpha}$. Conditioned media from H. pylori-infected gastric mucosal cells stimulated a tubular formation of HUVEC cells. We also found a significant inhibitory effect of PPI, an agent frequently used for H. pylori eradication, on H. pylori-induced angiogenesis. This drug effectively inhibited the phosphorylation of MAP kinase ERK1/2, which is a principal signal for H. pylori-induced angiogenesis. Conclusion: The fact that PPls can down-regulate H. pylori-induced angiogenesis suggest that anti-angiogenic treatment using PPI may be a preventive approach for H. pylori-associated carcinogenesis.

  • PDF

Microtubule-damaging Chemotherapeutic Agent-mediated Mitotic Arrest and Apoptosis Induction in Tumor Cells (미세소관-손상 항암제 처리에 의한 세포주기의 정지 및 에폽토시스 유도)

  • Jun, Do Youn;Kim, Young Ho
    • Journal of Life Science
    • /
    • v.26 no.3
    • /
    • pp.376-386
    • /
    • 2016
  • Apoptosis induction has been proposed as an efficient mechanism by which malignant tumor cells can be removed following chemotherapy. The intrinsic mitochondria-dependent apoptotic pathway is frequently implicated in chemotherapy-induced tumor cell apoptosis. Since DNA-damaging agent (DDA)-induced apoptosis is mainly regulated by the tumor suppressor protein p53, and since more than half of clinical cancers possess inactive p53 mutants, microtubule-damaging agents (MDAs), of which apoptotic effect is mainly exerted via p53-independent routes, can be promising choice for cancer chemotherapy. Recently, we found that the apoptotic signaling pathway induced by MDAs (nocodazole, 17α-estradiol, or 2-methoxyestradiol) commonly proceeded through mitotic spindle defect-mediated prometaphase arrest, prolonged Cdk1 activation, and subsequent phosphorylation of Bcl-2, Mcl-1, and Bim in human acute leukemia Jurkat T cells. These microtubule damage-mediated alterations could render the cellular context susceptible to the onset of mitochondria-dependent apoptosis by triggering Bak activation, Δψm loss, and resultant caspase cascade activation. In contrast, when the MDA-induced Bak activation was inhibited by overexpression of anti-apoptotic Bcl-2 family proteins (Bcl-2 or Bcl-xL), the cells in prometaphase arrest failed to induce apoptosis, and instead underwent mitotic slippage and endoreduplication cycle, leading to formation of populations with 8N and 16N DNA content. These data indicate that cellular apoptogenic mechanism is critical for preventing polyploid formation following MDA treatment. Since the formation of polyploid cells, which are genetically unstable, may cause acquisition of therapy resistance and disease relapse, there is a growing interest in developing new combination chemotherapies to prevent polyploidization in tumors after MDA treatment.

Proanthocyanidins Suppresses Lipopolysaccharide-stimulated Inflammatory Responses via Heme Oxygenase-1 Induction in RAW264.7 Macrophages (프로안토시아니딘의 항염증효과)

  • Cheon, Hye-Jin;Park, Sun Young;Jang, Hee-Ji;Cho, Da-Young;Jung, Jiwon;Park, Gimin;Jeong, Kyeong Mi;Kim, Jin-Kyung
    • Journal of Life Science
    • /
    • v.29 no.4
    • /
    • pp.484-491
    • /
    • 2019
  • Proanthocyanidins are naturally occurring polyphenolic compounds abundant in many vegetables, plant skins (rind/bark), seeds, flowers, fruits, and nuts. Numerous in vitro and in vivo studies have demonstrated myriad effects potentially beneficial to human health, such as antioxidation, immunomodulation, DNA repair, and antitumor activity. Among immune cells, macrophages are crucial players in a variety of inflammatory responses to environmental conditions. However, it has been widely reported that macrophages cause chronic inflammation and are involved in a variety of diseases, such as obesity, diabetes, metabolic syndrome, and cancer. In this study, we report the suppressive effect of proanthocyanidins via the heme oxygenase-1 (HO-1)-related system, on the immune response of the LPS-stimulated mouse macrophage cell line RAW264.7. Increased HO-1 expression at mRNA and protein levels were found in proanthocyanidins-treated RAW264.7 cells. Further, proanthocyanidins enhanced nuclear factor-erythroid 2-related factor 2 translocation into the nucleus. RAW264.7 cells were treated with lipopolysaccharide (LPS) with or without proanthocyanidins, and inflammatory mediator expression levels were assessed. Proanthocyanidins treatment resulted in the attenuation of nitric oxide production and inducible nitric oxide synthase expression in LPS-stimulated RAW264.7 cells. In addition, mRNA and protein expression of proinflammatory cytokines, such as tumor necrosis factor-${\alpha}$ and interleukin-6, was inhibited by proanthocyanidins treatment in LPS-stimulated RAW264.7 cells. These findings support proanthocyanidins as a promising anti-inflammatory agent.

Analysis of HBeAg and HBV DNA Detection in Hepatitis B Patients Treated with Antiviral Therapy (항 바이러스 치료중인 B형 간염환자에서 HBeAg 및 HBV DNA 검출에 관한 분석)

  • Cheon, Jun Hong;Chae, Hong Ju;Park, Mi Sun;Lim, Soo Yeon;Yoo, Seon Hee;Lee, Sun Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.23 no.1
    • /
    • pp.35-39
    • /
    • 2019
  • Purpose Hepatitis B virus (hepatitis B virus, HBV) infection is a worldwide major public health problem and it is known as a major cause of chronic hepatitis, liver cirrhosis and liver cancer. And serologic tests of hepatitis B virus is essential for diagnosing and treating these diseases. In addition, with the development of molecular diagnostics, the detection of HBV DNA in serum diagnoses HBV infection and is recognized as an important indicator for the antiviral agent treatment response assessment. We performed HBeAg assay using Immunoradiometric assay (IRMA) and Chemiluminescent Microparticle Immunoassay (CMIA) in hepatitis B patients treated with antiviral agents. The detection rate of HBV DNA in serum was measured and compared by RT-PCR (Real Time - Polymerase Chain Reaction) method Materials and Methods HBeAg serum examination and HBV DNA quantification test were conducted on 270 hepatitis B patients undergoing anti-virus treatment after diagnosis of hepatitis B virus infection. Two serologic tests (IRMA, CMIA) with different detection principles were applied for the HBeAg serum test. Serum HBV DNA was quantitatively measured by real-time polymerase chain reaction (RT-PCR) using the Abbott m2000 System. Results The detection rate of HBeAg was 24.1% (65/270) for IRMA and 82.2% (222/270) for CMIA. Detection rate of serum HBV DNA by real-time RT-PCR is 29.3% (79/270). The measured amount of serum HBV DNA concentration is $4.8{\times}10^7{\pm}1.9{\times}10^8IU/mL$($mean{\pm}SD$). The minimum value is 16IU/mL, the maximum value is $1.0{\times}10^9IU/mL$, and the reference value for quantitative detection limit is 15IU/mL. The detection rates and concentrations of HBV DNA by group according to the results of HBeAg serological (IRMA, CMIA)tests were as follows. 1) Group I (IRMA negative, CMIA positive, N = 169), HBV DNA detection rate of 17.7% (30/169), $6.8{\times}10^5{\pm}1.9{\times}10^6IU/mL$ 2) Group II (IRMA positive, CMIA positive, N = 53), HBV DNA detection rate 62.3% (33/53), $1.1{\times}10^8{\pm}2.8{\times}10^8IU/mL$ 3) Group III (IRMA negative, CMIA negative, N = 36), HBV DNA detection rate 36.1% (13/36), $3.0{\times}10^5{\pm}1.1{\times}10^6IU/mL$ 4) Group IV(IRMA positive, CMIA negative, N = 12), HBV DNA detection rate 25% (3/12), $1.3{\times}10^3{\pm}1.1{\times}10^3IU/mL$ Conclusion HBeAg detection rate according to the serological test showed a large difference. This difference is considered for a number of reasons such as characteristics of the Ab used for assay kit and epitope, HBV of genotype. Detection rate and the concentration of the group-specific HBV DNA classified serologic results confirmed the high detection rate and the concentration in Group II (IRMA-positive, CMIA positive, N = 53).