Biotic and Abiotic Factors Affecting Homoharringtonine Contents of Cephalotaxus koreana Nakai

개비자나무의 homoharringtonine 함량에 영향을 미치는 생물 및 무생물적 환경인자

  • Jung, Myung-Suk (Department of Forest Science, Seoul National University) ;
  • Hyun, Jung-Oh (Department of Forest Science, Seoul National University) ;
  • Lee, Uk (Department of Forest Resources Development, Korea Forest Research Institute) ;
  • Baik, Eul-Sun (Department of Forest Resources Development, Korea Forest Research Institute)
  • 정명석 (서울대학교 산림과학부) ;
  • 현정오 (서울대학교 산림과학부) ;
  • 이욱 (국립산림과학원 산림자원육성부) ;
  • 백을선 (국립산림과학원 산림자원육성부)
  • Received : 2010.03.11
  • Accepted : 2010.04.20
  • Published : 2010.04.30

Abstract

This study was carried out to investigate abiotic and biotic environmental factors affecting homoharringtonine (HHT) contents of Cephalotaxus koreana, whereby, to provide basic information of high value-added industry production of HHT as a promising anti-cancer agent. For correlation between abiotic environmental factors (soil moisture, soil pH, habitat density and temperature) and HHT contents, the contents were highly correlated with soil moisture (0.77) and soil pH (-0.68). For multiple regression analysis of relationship between abiotic environmental factors (soil moisture and soil pH) and HHT contents, soil moisture appeared to be strongly affecting the contents relatively due to being significant at only its regression coefficient ($26.48^{***}$). For the effect of biotic environmental factors (damage index) affecting HHT contents, the contents was quadratic with equation of $H=278.23+1242D-398.87D^2$, also, damage index had strong effect on the contents. Finally, for the result of the most influencing an environmental factor on HHT contents, both damage index and soil moisture were suitable in second polynomial regression, also, damage index ($R^2=0.73^{***}$) was turned out to be more influencing factor than soil moisture ($R^2=0.67^{**}$) on HHT contents relatively. Therefore, we predict that HHT contents in the trees of Cephalotaxus koreana is produced as a chemical defense mechanism triggered by a stress-related damage of fungi or insects.

천연집단에 서식하는 개비자나무 개체들을 이용해 무생물 및 생물적 환경인자가homoharringtonine(HHT) 함량에 미치는 영향을 조사하여 향후 항암제 가능성이 있는 HHT의 고부가가치 산업적인 생산이 기대되는 연구에 기초자료를 제공하고자 본 연구를 수행하였다. 무생물적 환경인자(토양습도, 토양pH, 서식밀도, 기온)와 HHT 함량과의 상관관계에 있어 HHT 는 토양습도(0.77)와 토양pH(-0.68)에서 높은 상관을 보였다. 고도에 따른 무생물적 환경인자 (토양습도, 토양pH)와 HHT 의 함량 관계에 관해 다중회귀 분석을 실시한 결과, 토양 습도의 회귀계수($26.48^{***}$) 만 유의하여 토양 습도가 상대적으로 HHT 함량에 높은 영향을 미치는 것으로 나타났다. 생물적 환경인자(damage index)에 따른 HHT 함량에 미치는 영향을 살펴 본 결과, HHT는 2차곡선회귀적으로 증가하다 감소하는($H=278.23+1242D-398.87D^2$) 경향을 보였고 damage index는 HHT 함량에 높은 영향을 미치는 것으로 분석되었다. 마지막으로 HHT 의 함량에 영향을 미치는 최적환경인자를 분석한 결과, damage index와 토양 습도 모두가 2차다항회귀식으로 가장 적합하였고 결정계수는 각각 0.73와 0.67로 damage index가 상대적으로 HHT 함량에 높은 영향을 미치는 것으로 나타났다. 이는 섭식자 또는 균류와 같은 스트레스로 인한 방어기작이 HHT 의 생성에 높은 영향을 미치는 것으로 판단된다.

Keywords

References

  1. Berenbaum, M. R., A. R. Zangerl, and J. K. Nitao, 1986. Constraints on chemical coevolution: wild parsnips and the parsnip webworm. Evolution 40:1215-1228. https://doi.org/10.2307/2408949
  2. Bryant, J. P., T. P. Clausen, P. B. Reichardt, M. C. McCarathy and R. A. Werner. 1987. Effect of nitrogen fertilization upon the secondary chemistry and nutritional value of quaking aspen (Populus tremuloides Michx.) leaves for the large aspen tortrix (Choristoneura conflictana [Walker]). Oecologia 73:513-517. https://doi.org/10.1007/BF00379408
  3. Darrow, K. and M. Deane Bowers. 1997. Phenological population variation in iridoid glycosides of Plantago lanceolata. Biochem. Syst. Ecol. 25(1):1-11. https://doi.org/10.1016/S0305-1978(96)00090-7
  4. Dirzo, R. and C. A. Domguez. 1995. Plant-herbivore interactions in Mesoamerican tropical dry forests. In: Bullock S.H., Mooney H.A. and Medina E. (eds), Seasonal dry tropical forests. Cambridge University Press, Cambridge, pp.304-325.
  5. Herminio, B., B. Antonio. 1998. Environemental factors affecting chemical variability of essential oils in Thymus piperella L. Bio. Sys. and Eco. 26:811-822. https://doi.org/10.1016/S0305-1978(98)00047-7
  6. Herms, D. A. and W. J. Mattson. 1992. The dilemma of plants: To grow or defend. Q. Rev. Biol. 67:293-335.
  7. Jingyi, H., A. P. Cheung, E. Wang, E. Struble, K. Fang, N. Nguyen, P. Liu. 2000. Stability-indicating LC assay od and impurity identifiaction in homoharringtonine samples, J. Pharm. & Biomed. Anal 22:541-554. https://doi.org/10.1016/S0731-7085(99)00314-3
  8. Krischik, V. A. and R. F. Denno. 1983. Individual, population, and geographic patterns in plant defense. In Variable Plants and Herbivores in Natural and Managed Systems. eds R. F. Denno and M. S. McClure. pp.463-512.
  9. Luciano, B., M. Aurelio, B. Bice, M. Anna. 1994. Alkaloid content in four spartium junceum populations as a defensive strategy against predators. phytochemistry 37(4):1197-1120. https://doi.org/10.1016/S0031-9422(00)89557-6
  10. Mihaliak, C. A. and D. E. Lincoln. 1989. Plant biomass partitioning and chemical defense: Response to defoliation and nitrate limitation. Oecologia 80:122-126. https://doi.org/10.1007/BF00789940
  11. Ohnamam, T. and J. F. Holland. 1985. Homoharringtonine as a new antileukemic agent. J. Clin. Oncol 3:604-606. https://doi.org/10.1200/JCO.1985.3.5.604
  12. Powell, R. G., D. Weisleder and C. R. Smith. 1972. Antitumor alkaloids from Cephalotaxus harringtonia: structure and activity, J. Pharm. Sci 61:1227-1230. https://doi.org/10.1002/jps.2600610812
  13. Simms, E. L. 1992. Costs of plant resistance to herbivory. In Plant Resistance to Herbivores and Pathogens: Ecology, Evolution, and Genetics, eds R. S. Fritz and E. L. Simms, University of Chicago Press, Chicago, pp.392-425.
  14. Veronika, N. K., F. Esther, C. Tibor, S. Gabor. 1996. Determination of taxol in Taxus species grown in Hungary by highperformance liquid chromatography-diode array detection-Effect of vegetative period. J. Chromatogr. A. 750:253-256. https://doi.org/10.1016/0021-9673(96)00541-9
  15. Waterman, P. G. and S. Mole. 1989. Extrinsic factors influencing production of secondary metabolites in plants. In Insect-Plant Interactions, ed. E. A. Bernays, Vol. I, CRC Press, Boca Raton, Florida, pp.107-134.
  16. Wickremesinhe, E. R. M. and R. N. Arteca. 1996. HPLC separation of cephalotaxine, harringtonine and homoharringtonine from callus and root cultures of Cephalotaxus harringtonia, J. Liq. Chrom. & Rel. Technol. 19:889-897. https://doi.org/10.1080/10826079608001919
  17. Wilkens, R. T., J. M. Spoerke and N. E. Stamp. 1996. Differential responses of growth and two soluble phenolics of tomato to resource availability. Ecology 77:247-258. https://doi.org/10.2307/2265674
  18. Woodhead, S. 1981. Environmental and biotic factors affecting the phenolic content of different cultivars of Sorghum bicolor. J. Chem. Ecol. 7:13-57.
  19. Zangerl, A. R. and F. A. Bazzaz. 1992. Theory and pattern in plant defense allocation. In Plant Resistance to Herbivores and Pathogens: Ecology, Evolution, and Genetics. eds R. S. Fritz and E. L. Simms. pp.363-391.
  20. Zangerl, A. R. and M. R. Berenbaum. 1993. Plant chemistry, insect adaptations to plant chemistry, and host plant utilization patterns. Ecology 74:47-54. https://doi.org/10.2307/1939500