Browse > Article
http://dx.doi.org/10.5352/JLS.2019.29.4.484

Proanthocyanidins Suppresses Lipopolysaccharide-stimulated Inflammatory Responses via Heme Oxygenase-1 Induction in RAW264.7 Macrophages  

Cheon, Hye-Jin (Department of Biomedical Science, Daegu Catholic University)
Park, Sun Young (Department of Biomedical Science, Daegu Catholic University)
Jang, Hee-Ji (Department of Biomedical Science, Daegu Catholic University)
Cho, Da-Young (Department of Biomedical Science, Daegu Catholic University)
Jung, Jiwon (Yeongcheon Girl's High School)
Park, Gimin (Yeongcheon Girl's High School)
Jeong, Kyeong Mi (Yeongcheon Girl's High School)
Kim, Jin-Kyung (Department of Biomedical Science, Daegu Catholic University)
Publication Information
Journal of Life Science / v.29, no.4, 2019 , pp. 484-491 More about this Journal
Abstract
Proanthocyanidins are naturally occurring polyphenolic compounds abundant in many vegetables, plant skins (rind/bark), seeds, flowers, fruits, and nuts. Numerous in vitro and in vivo studies have demonstrated myriad effects potentially beneficial to human health, such as antioxidation, immunomodulation, DNA repair, and antitumor activity. Among immune cells, macrophages are crucial players in a variety of inflammatory responses to environmental conditions. However, it has been widely reported that macrophages cause chronic inflammation and are involved in a variety of diseases, such as obesity, diabetes, metabolic syndrome, and cancer. In this study, we report the suppressive effect of proanthocyanidins via the heme oxygenase-1 (HO-1)-related system, on the immune response of the LPS-stimulated mouse macrophage cell line RAW264.7. Increased HO-1 expression at mRNA and protein levels were found in proanthocyanidins-treated RAW264.7 cells. Further, proanthocyanidins enhanced nuclear factor-erythroid 2-related factor 2 translocation into the nucleus. RAW264.7 cells were treated with lipopolysaccharide (LPS) with or without proanthocyanidins, and inflammatory mediator expression levels were assessed. Proanthocyanidins treatment resulted in the attenuation of nitric oxide production and inducible nitric oxide synthase expression in LPS-stimulated RAW264.7 cells. In addition, mRNA and protein expression of proinflammatory cytokines, such as tumor necrosis factor-${\alpha}$ and interleukin-6, was inhibited by proanthocyanidins treatment in LPS-stimulated RAW264.7 cells. These findings support proanthocyanidins as a promising anti-inflammatory agent.
Keywords
Heme oxygenase-1; inducible nitric oxide synthase; inflammation; macrophages; proanthocyanidins;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lind, M., Hayes, A., Caprnda, M., Petrovic, D., Rodrigo, L., Kruzliak, P. and Zulli, A. 2017. Inducible nitric oxide synthase: Good or bad? Biomed. Pharmacother. 93, 370-375.   DOI
2 Long, M., Yang, S., Zhang, Y., Li, P., Han, J., Dong, S., Chen, X. and He, J. 2017. Proanthocyanidin protects against acute zearalenone-induced testicular oxidative damage in male mice. Environ. Sci. Pollut. Res. Int. 24, 938-946.   DOI
3 Matzneller, P., Strommer, S., Drucker, C., Petroczi, K., Schorgenhofer, C., Lackner, E., Jilma, B. and Zeitlinger, M. 2017. Colistin reduces LPS-triggered inflammation in a human sepsis model in vivo: A randomized controlled trial. Clin. Pharmacol. Ther. 101, 773-781.   DOI
4 Morse, D., Pischke, S. E., Zhou, Z., Davis, R. J., Flavell, R. A., Loop, T., Otterbein, S. L., Otterbein, L. E. and Choi, A. M. 2003. Suppression of inflammatory cytokine production by carbon monoxide involves the JNK pathway and AP-1. J. Biol. Chem. 278, 36993-36998.   DOI
5 Otterbein, L. E., Bach, F. H., Alam, J., Soares, M., Tao Lu, H., Wysk, M., Davis, R. J., Flavell, R. A. and Choi, A. M. 2000. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat. Med. 6, 422-428.   DOI
6 Paine, A., Eiz-Vesper, B., Blasczyk, R. and Immenschuh, S. 2010. Signaling to heme oxygenase-1 and its anti-inflammatory therapeutic potential. Biochem. Pharmacol. 80, 1895-1903.   DOI
7 Ravindranathan, P., Pasham, D., Balaji, U., Cardenas, J., Gu, J., Toden, S. and Goel, A. 2018. Mechanistic insights into anticancer properties of oligomeric proanthocyanidins from grape seeds in colorectal cancer. Carcinogenesis 39, 767-777.   DOI
8 Rochette, L., Cottin, Y., Zeller, M. and Vergely, C. 2013. Carbon monoxide: mechanisms of action and potential clinical implications. Pharmacol. Ther. 137, 133-152.   DOI
9 Sarady-Andrews, J. K., Liu, F., Gallo, D., Nakao, A., Overhaus, M., Ollinger, R., Choi, A. M. and Otterbein, L. E. 2005. Biliverdin administration protects against endotoxin-induced acute lung injury in rats. Am. J. Physiol. Lung Cell Mol. Physiol. 289, L1131-L1137.   DOI
10 Shahat, A. A., Ismail, S. I., Hammouda, F. M., Azzam, S. A., Lemiere, G., De Bruyne, T., De Swaef, S., Pieters, L. and Vlietinck, A. 1998. Anti-HIV activity of flavonoids and proanthocyanidins from Crataegus sinaica. Phytomedicine 5, 133-136.   DOI
11 Shapouri-Moghaddam, A., Mohammadian, S., Vazini, H., Taghadosi, M., Esmaeili, S. A., Mardani, F., Seifi. B., Mohammadi, A., Afshari, J. T. and Sahebkar, A. 2018. Macrophage plasticity, polarization, and function in health and disease. J. Cell. Physiol. 233, 6425-6440.
12 Takeda, T. A., Sasai, M., Adachi, Y., Ohnishi, K., Fujisawa, J. I., Izawa, S. and Taketani, S. 2017. Potential role of heme metabolism in the inducible expression of heme oxygenase-1. Biochim. Biophys. Acta Gen. Subj. 1861, 1813-1824.   DOI
13 Yang, G., Li, Y., Wu, W., Liu, B., Ni, L., Wang, Z., Miao, S., Wang, L. and Liu, C. 2015. Anti-oxidant effect of heme oxygenase-1 on cigarette smoke-induced vascular injury. Mol. Med. Rep. 12, 2481-2486.   DOI
14 Yang, L., Xian, D., Xiong, X., Lai, R., Song, J. and Zhong, J. 2018. Proanthocyanidins against oxidative stress: From molecular mechanisms to clinical applications. Biomed. Res. Int. 2018, 8584136.
15 Wang, Y. R., Chen, K. L., Li, C. M., Li, L. and Wang, G. L. 2019. Heme oxygenase 1 regulates apoptosis induced by heat stress in bovine ovarian granulosa cells via the ERK1/2 pathway. J. Cell. Physiol. 234, 3961-3972.   DOI
16 Zhang, R. G., Pan, K., Hao, Y., Yip, C. Y. and Ko, W. H. 2019. Anti-inflammatory action of HO-1/CO in human bronchial epithelium in response to cationic polypeptide challenge. Mol. Immunol. 105, 205-212.   DOI
17 Bagchi, D., Bagchi, M., Stohs, S. J., Das, D. K., Ray, S. D., Kuszynski, C. A., Joshi, S. S. and Pruess, H. G. 2000. Free radicals and grape seed proanthocyanidin extract: importance in human health and disease prevention. Toxicology 148, 187-197.   DOI
18 Srisook, K., Han, S. S., Choi, H. S., Li, M. H., Ueda, H., Kim, C. and Cha, Y. N. 2006. CO from enhanced HO activity or from CORM-2 inhibits both O2- and NO production and downregulates HO-1 expression in LPS-stimulated macrophages. Biochem. Pharmacol. 71, 307-318.   DOI
19 Su, X., Howell, A. B. and D'Souza, D. H. 2010. Antiviral effects of cranberry juice and cranberry proanthocyanidins on foodborne viral surrogates--a time dependence study in vitro. Food Microbiol. 27, 985-991.   DOI
20 Ammar el, S. M., Said, S. A., El-Damarawy, S. L. and Suddek, G. M. 2013. Cardioprotective effect of grape-seed proanthocyanidins on doxorubicin-induced cardiac toxicity in rats. Pharm. Biol. 51, 339-344.   DOI
21 Bagchi, D., Garg, A., Krohn, R. L., Bagchi, M., Tran, M. X. and Stohs, S. J. 1997. Oxygen free radical scavenging abilities of vitamins C and E, and a grape seed proanthocyanidin extract in vitro. Res. Commun. Mol. Pathol. Pharmacol. 95, 179-189.
22 Braune, J., Weyer, U., Hobusch, C., Mauer, J., Bruning, J. C., Bechmann, I. and Gericke, M. 2017. IL-6 Regulates M2 Polarization and local proliferation of adipose tissue macrophages in obesity. J. Immunol. 198, 2927-2934.   DOI
23 He, L., Li, P., Yu, L. H., Li, L., Zhang, Y., Guo, Y., Long, M., He, J. B. and Yang, S. H. 2018. Protective effects of proanthocyanidins against cadmium-induced testicular injury through the modification of Nrf2-Keap1 signal path in rats. Environ. Toxicol. Pharmacol. 57, 1-8.   DOI
24 De Simone, V., Franze, E., Ronchetti, G., Colantoni, A., Fantini, M. C., Di Fusco, D., Sica, G. S., Sileri, P., Mac Donald, T. T., Pallone, F., Monteleone, G. and Stolfi, C. 2015. Th17-type cytokines, IL-6 and TNF-${\alpha}$ synergistically activate STAT3 and NF-${\kappa}B$ to promote colorectal cancer cell growth. Oncogene 34, 3493-503.   DOI
25 Dennery, P. A. 2014. Signaling function of heme oxygenase proteins. Antioxid. Redox. Signal. 20, 1743-1753.   DOI
26 El-Shitany, N. A. and Eid, B. 2017. Proanthocyanidin protects against cisplatin-induced oxidative liver damage through inhibition of inflammation and NF-${\kappa}B$/TLR-4 pathway. Environ. Toxicol. 32, 1952-1963.   DOI
27 Lee, T. S. and Chau, L. Y. 2002. Heme oxygenase-1 mediates the anti-inflammatory effect of interleukin-10 in mice, Nat. Med. 8, 240-246.   DOI