• Title/Summary/Keyword: Anti-bacterial activity

Search Result 352, Processing Time 0.03 seconds

Bee Venom (Apis Mellifera) an Effective Potential Alternative to Gentamicin for Specific Bacteria Strains - Bee Venom an Effective Potential for Bacteria-

  • Zolfagharian, Hossein;Mohajeri, Mohammad;Babaie, Mahdi
    • Journal of Pharmacopuncture
    • /
    • v.19 no.3
    • /
    • pp.225-230
    • /
    • 2016
  • Objectives: Mellitine, a major component of bee venom (BV, Apis mellifera), is more active against gram positive than gram negative bacteria. Moreover, BV has been reported to have multiple effects, including antibacterial, antivirus, and anti-inflammation effects, in various types of cells. In addition, wasp venom has been reported to have antibacterial properties. The aim of this study was to evaluate the antibacterial activity of BV against selected gram positive and gram negative bacterial strains of medical importance. Methods: This investigation was set up to evaluate the antibacterial activity of BV against six grams positive and gram negative bacteria, including Staphylococcus aureus (S. aureus), Salmonella typhimurium, Escherichia coli (E. coli) O157:H7, Pseudomonas aeruginosa, Burkholderia mallei and Burkholderia pseudomallei. Three concentrations of crude BV and standard antibiotic (gentamicin) disks as positive controls were tested by using the disc diffusion method. Results: BV was found to have a significant antibacterial effect against E. coli, S. aureus, and Salmonella typhyimurium in all three concentrations tested. However, BV had no noticeable effect on other tested bacteria for any of the three doses tested. Conclusion: The results of the current study indicate that BV inhibits the growth and survival of bacterial strains and that BV can be used as a complementary antimicrobial agent against pathogenic bacteria. BV lacked the effective proteins necessary for it to exhibit antibacterial activity for some specific strains while being very effective against other specific strains. Thus, one may conclude, that Apis mellifera venom may have a specific mechanism that allows it to have an antibacterial effect on certain susceptible bacteria, but that mechanism is not well understood.

Isolation and Characterization of an Acyclic Isoprenoid from Semecarpus anacardium Linn. and its Antibacterial Potential in vitro - Antimicrobial Activity of Semecarpus anacardium Linn. Seeds -

  • Purushothaman, Ayyakkannu;Meenatchi, Packirisamy;Saravanan, Nallappan;Karuppaiah, Muthu;Sundaram, Ramalingam
    • Journal of Pharmacopuncture
    • /
    • v.20 no.2
    • /
    • pp.119-126
    • /
    • 2017
  • Objectives: Semecarpus anacardium Linn. is a plant well-known for its antimicrobial, antidiabetic and anti-arthritic properties in the Ayurvedic and Siddha system of medicine. This has prompted the screening of this plant for antibacterial activity. The main aims of this study were to isolate compounds from the plant's seeds and to evaluate their antibacterial effects on clinical bacterial test strains. Methods: The n-butanolic concentrate of the seed extract was subjected to thin layer chromatography (TLC) and repeated silica gel column chromatography followed by elution with various solvents. The compound was identified based on observed spectral (IR, $^1H$ NMR, $^{13}C$ NMR and high-resolution mass spectrometry) data. The well diffusion method was employed to evaluate the antibacterial activities of the isolated acyclic isoprenoid compound (final concentration: $5-15{\mu}g/mL$) on four test bacterial strains, namely, Staphylococcus aureus (MTCC 96), Bacillus cereus (MTCC 430), Escherichia coli (MTCC 1689) and Acinetobacter baumannii (MTCC 9829). Results: Extensive spectroscopic studies showed the structure of the isolated compound to be an acyclic isoprenoid ($C_{21}H_{32}O$). Moreover, the isoprenoid showed a remarkable inhibition of bacterial growth at a concentration of $15{\mu}g/mL$ compared to the two other doses tested (5 and $10{\mu}g/mL$) and to tetracycline, a commercially available antibiotic that was used as a reference drug. Conclusion: The isolation of an antimicrobial compound from Semecarpus anacardium seeds validates the use of this plant in the treatment of infections. The isolated compound found to be active in this study could be useful for the development of new antimicrobial drugs.

Antibacterial and Whitening Activities of Coffea arabica Ethanol Extract (커피 에탄올 추출물의 항균 및 미백활성)

  • Kim, In Hae;Lee, Jae Hwa
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.245-251
    • /
    • 2018
  • In this study, Coffea arabica ethanol extract (CAE) was tested for possible functional cosmetic agent. Whitening effect was measured by tyrosinase inhibition assay, and anti-oxidant activity was checked by SOD-like activity. SOD-like activity of CAE showed $94.8{\pm}6.2%$ at $500{\mu}g/mL$. The anti-bacterial activities CAE was evaluated against three different gram-positive bacteria and six gram-negative bacteria including MRSA strains. CAE exhibited in vitro broad spectrum antimicrobial activities of gram-negative bacteria without antifungal activity. CAE was strong exhibited against MRSA CCARM3561. The tyrosinase and L-DOPA inhibitory activities of the CAE lower than those positive control arbutin. CAE reduced melanin contents of B16-F10 melanoma cell in a dose dependent manner and decrease about 89.2% at a concentration $100{\mu}g/mL$. These result highlight the potential of coffee extract as a naturally active and non-toxic antibacterial suitable for cosmetic applications.

4-Chloro-2-Isopropyl-5-Methylphenol Exhibits Antimicrobial and Adjuvant Activity against Methicillin-Resistant Staphylococcus aureus

  • Kim, Byung Chan;Kim, Hyerim;Lee, Hye Soo;Kim, Su Hyun;Cho, Do-Hyun;Jung, Hee Ju;Bhatia, Shashi Kant;Yune, Philip S.;Joo, Hwang-Soo;Kim, Jae-Seok;Kim, Wooseong;Yang, Yung-Hun
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.6
    • /
    • pp.730-739
    • /
    • 2022
  • Methicillin-resistant Staphylococcus aureus (MRSA) causes severe infections and poses a global healthcare challenge. The utilization of novel molecules which confer synergistical effects to existing MRSA-directed antibiotics is one of the well-accepted strategies in lieu of de novo development of new antibiotics. Thymol is a key component of the essential oil of plants in the Thymus and Origanum genera. Despite the absence of antimicrobial potency, thymol is known to inhibit MRSA biofilm formation. However, the anti-MRSA activity of thymol analogs is not well characterized. Here, we assessed the antimicrobial activity of several thymol derivatives and found that 4-chloro-2-isopropyl-5-methylphenol (chlorothymol) has antimicrobial activity against MRSA and in addition it also prevents biofilm formation. Chlorothymol inhibited staphyloxanthin production, slowed MRSA motility, and altered bacterial cell density and size. This compound also showed a synergistic antimicrobial activity with oxacillin against highly resistant S. aureus clinical isolates and biofilms associated with these isolates. Our results demonstrate that chlorinated thymol derivatives should be considered as a new lead compound in anti-MRSA therapeutics.

Effects of Dietary Prebiotics and Probiotics on Growth, Immune Response, Anti-oxidant Capacity and Some Intestinal Bacterial Groups of the Red Seabream Pagrus major (사료 내 Prebiotic과 Probiotics의 첨가가 참돔(Pagrus major)의 성장, 면역력, 항산화력, 장내 미생물 조성 변화에 미치는 영향)

  • Jongho Lim;Gunho Eom;Choong Hwan Noh;Kyeong-jun Lee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.1
    • /
    • pp.89-98
    • /
    • 2023
  • We evaluated the effects of prebiotic (mannan oligosaccharides, Mos) and probiotic diet supplements on growth performance, innate immunity, antioxidant activity, and intestinal changes in the microbial flora of red seabream Pagrus major. A basal diet (Con) was formulated to meet the nutrient requirement of red seabream. The dietary starch in Con was replaced with 0.6% Mos, Lactobacillus plantarum, Bacillus subtilis, B. licheniformis and probiotic mixture (labeled as Mos, Pro-LP, Pro-BS, Pro-BL and Pro-Mix, respectively). We stocked 450 fish in 18 polypropylene tanks (400 L) in triplicate groups per dietary treatment. The fish were fed one of the diets twice (08:30, 18:30 h) a day for 63 days. Lysozyme activity was significantly higher in all the supplemented groups than that of the Con group. The immunoglobulin level of Pro-Mix, anti-protease activity of Pro-BL, and glutathione peroxidase and superoxide dismutase activity of Pro-BS, Pro-BL and Pro-Mix groups were significantly higher than those of the Con group. The ratio of total Vibrio/heterotrophic marine bacteria counts was significantly lower in Pro-LP, Pro-BL and Pro-Mix groups than that of the Con group. Therefore, dietary supplementation of Mos and probiotics to improves immune response and antioxidant enzyme activity and inhibits Vibrio bacteria in the intestine.

Assessment of the Contribution of Antagonistic Secondary Metabolites to the Antifungal and Biocontrol Activities of Pseudomonas fluorescens NBC275

  • Dutta, Swarnalee;Yu, Sang-Mi;Lee, Yong Hoon
    • The Plant Pathology Journal
    • /
    • v.36 no.5
    • /
    • pp.491-496
    • /
    • 2020
  • An understanding of the contribution of secondary metabolites (SMs) to the antagonistic and biocontrol activities of bacterial biocontrol agents serves to improve biocontrol potential of the strain. In this study, to evaluate the contribution of each SM produced by Pseudomonas fluorescens NBC275 (Pf275) to its antifungal and biocontrol activity, we combined in silico analysis of the genome with our previous study of transposon (Tn) mutants. Thirteen Tn mutants, which belonged to 6 biosynthetic gene clusters (BGCs) of a total 14 BGCs predicted by the antiSMASH tool were identified by the reduction of antifungal activity. The biocontrol performance of Pf275 was significantly dependent on 2,4-diacetylphloroglucinol and pyoverdine. The clusters that encode for arylpolyene and an unidentified small linear lipopeptide influenced antifungal and biocontrol activities. To our knowledge, our study identified the contribution of SMs, such as a small linear lipopeptide and arylpolyene, to biocontrol efficacy for the first time.

The inhibitory Effect of Sanggenon C from the Root-bark of Morus alba L. on the Growth and the Cellular Adherence of Streptococcus mutans (상백피의 Sanggenon C에 의한 Streptococcus mutans의 생육 및 균부착 저해효과)

  • Park, Won-Jae;Lee, Hyung-Jae;Yang, Seung-Gak
    • YAKHAK HOEJI
    • /
    • v.34 no.6
    • /
    • pp.434-438
    • /
    • 1990
  • The methanolic extract of the root-bark of Morus alba L.(Mulberry tree) has the potent antibacterial activity against Streptococcus mutans. Its active component was identified to be sanggenon C. The active component had stronger anti-bacterial activity than berberine, having minimum inhibitory concentration(MIC) of $25\;{\mu}g/ml$. Moreover, the inhibitory effect of this component on the cellular adherence of Streptococcus mutans to glass surfaces also was more remarkable than that of berberine in the presence of glucosyltransferase(GTase) and sucrose in vitro. These results indicate that sanggenon C may play an important role in inhibiting plaque formation and caries incidence.

  • PDF

Antimicrobial Property of $(+)-Lyoniresinol-3{\alpha}-O-\beta-D-Glucopyranoside$ Isolated From the Root Bark of Lycium chinense Miller Against Human Pathogenic Microorganisms

  • Lee Dong Gun;Jung Hyun Jun;Woo Eun-Rhan
    • Archives of Pharmacal Research
    • /
    • v.28 no.9
    • /
    • pp.1031-1036
    • /
    • 2005
  • [ $(+)-Lyoniresinol-3{\alpha}-O-\beta-D-glucopyranoside$ ] (1) was isolated from an ethyl acetate extract of the root bark from Lycium chinense Miller, and its structure was determined using 1D and 2D NMR spectroscopy including DEPT, HMQC, and HMBC. $(+)-Lyoniresinol-3{\alpha}-O-\beta-D-glucopyranoside$ exhibited potent antimicrobial activity against antibiotic-resistant bacterial strains, methicillin-resistant Staphylococcus aureus (MRSA) isolated from patients, and human pathogenic fungi without having any hemolytic effect on human erythrocytes. In particular, compound 1 induced the accumulation of intracellular trehalose on C. albicans as stress response to the drug, and disrupted the dimorphic transition that forms pseudo-hyphae caused by the pathogenesis. This indicates that $(+)-Lyoniresinol-3{\alpha}-O-\beta-D-glucopyranoside$ has excellent potential as a lead compound for the development of antibiotic agents.

Antioxidant and Antibacterial Properties of Hovenia (Hovenia dulcis) Monofloral Honey Produced in South Korea

  • Park, Seung Hee;Kim, Young Ki;Kim, Moon Seob;Lee, Seung Ho
    • Food Science of Animal Resources
    • /
    • v.40 no.2
    • /
    • pp.221-230
    • /
    • 2020
  • The aim of this study was to evaluate the antioxidant and antibacterial activity of Hovenia (Hovenia dulcis) monofloral honey produced in Korea. To produce Hovenia monofloral honey, Hovenia trees were surrounded by a net house, and honeybees were breed there over a 20-day period. Hovenia monofloral honey contained more than 95% of Hovenia pollen and showed physicochemical properties in agreement with the international honey standard (Codex). The total phenolic and flavonoid contents of Hovenia monofloral honey ranged from a 24.82-27.00 mg gallic acid equivalent/100 g honey and a 0.41-0.46 mg quercetin equivalent/100 g honey, respectively. In addition, to evaluate the functional properties of Hovenia monofloral honey, the antioxidant activity of Hovenia monofloral honey was estimated by using the 1,1-diphenyl-2-picrylhydrazyl radical and the 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging assay. Furthermore, Hovenia monofloral honey showed an antibacterial activity against foodborne gram positive (Listeria monocytogenes and Staphylococcus aureus) and gram negative bacteria (Salmonella Typhimurium and Escherichia coli O157:H7).

Antimicrobial Activity of Methyl Gallate isolated from the Leaves of Glochidion superbum Against Hospital Isolates of Methicillin Resistant Staphylococcus aureus

  • Ahmed, Mohammed Dahiru;Taher, Muhammad;Maimusa, Alhaji Hamusu;Rezali, Mohamad Fazlin;Mahmud, Mohammed Imad Al-deen Mustafa
    • Natural Product Sciences
    • /
    • v.23 no.1
    • /
    • pp.5-8
    • /
    • 2017
  • An antimicrobial compound has been isolated from the leaves of Glochidion superbum. The compound was determined as methyl 3, 4, 5-trihydroxybenzoate (methyl gallate), based on ultraviolet (UV), infrared (IR), nuclear magnetic resonance (NMR) and mass spectroscopy (MS) analysis. The isolated compound exhibited potent antimicrobial activity against three clinical isolates of methicillin resistant Staphylococcus aureus (MRSA) by qualitative agar disc diffusion method and quantitative broth dilution method. Agar disc diffusion was done in a dose-dependent manner for each bacterial isolate at disc potencies of 25, 50, 100, and $150{\mu}g/disc$. The zones of inhibition were on average equal to 12.27, 14.20, 15.43, and 24.17 mm respectively. The inhibition zones were compared with that of vancomycin disc at $30{\mu}g$ as a reference standard. The MIC and MBC values were $50{\mu}g/ml$ and $100{\mu}g/ml$ respectively. The results of anti MRSA activity were analyzed using one-way ANOVA with Turkey's HSD and Duncan test. In conclusion, methyl gallate which was isolated from G. superbum showed the inhibition activity against methicillin resistant S. aureus.