1 |
Funayama, S., Yoshida, K., Konno, H., and Hikkino, H., Structure of Kukoamine A, a hypotensive principle of Lycium chinense root bark. Tetrahedron Lett., 21, 1355-1356 (1980)
DOI
ScienceOn
|
2 |
Kim, S. Y., Choi, Y.-H., Huh, H., Kim, J., Kim, Y. C., and Lee, H. S., New antihepatotoxic cerebroside from Lycium chinense Fruits. J. Nat. Prod., 60, 274-276 (1997)
DOI
ScienceOn
|
3 |
Lehrer, R., Lichtenstein, A. K., and Ganz, T., Defensins: Antimicrobial and cytotoxic peptides of mammalian cells. Annu. Rev. lmmunol., 11, 105-128 (1993)
DOI
ScienceOn
|
4 |
Terauchi, M., Kanamori, H., Nobuso, M., Yahara, S., and Yamasaki, K., New acyclic diterpene glycoside, Lyciumoside IV-IX from Lycium chinense Mill. Nat. Med., 52, 167-171 (1998)
|
5 |
Sannai, A., Fujimori, T., and Kato, K., Isolation of (-)-1,2-dehydro--cyperone and solavetivone from Lycium chinense. Phytochemistry, 21, 2986-2987 (1982)
DOI
ScienceOn
|
6 |
Alvarez-Peral, F. J. and Arguelles, J.-C., Changes in external trehalase activity during human serum-induced dimorphic transition in Candida albicans. Res. Microbiol., 151,837-843 (2000)
DOI
ScienceOn
|
7 |
Lee, D. G., Park, Y., Kim, M.-R., Jung, H. J., Seu, Y. B., Hahm, K.-S., and Woo, E.-R., Antifungal effects of phenolic amides isolated from the root bark of Lycium chinense. Biotechnol. Lett., 26, 1125-1130 (2004)
DOI
ScienceOn
|
8 |
Morota, T., Sasaki, H., Chin, M., Sato, T., Katayama, N., Fukuyama, K., and Mitsuhashi, H., Studies on the crude drug containing the angiotensin I converting enzyme inhibitors (I) on the active principles of Lycium chinense Miller. Shoyakugaku Zasshi, 41, 169-173 (1987)
|
9 |
Terauchi, M., Kanamori, H., Nobuso, M., Yahara, S., and Nohara, T., Detection and determination of antioxidative components in Lycium chinense. Nat. Med., 51, 387-391 (1997)
|
10 |
Achenbach, H., Lowel, M., Waibel, R., Gupta, M., and Solis, P., New lignan glucosides from Stemmadenia minima. Planta Med., 58, 270-272 (1992)
DOI
ScienceOn
|
11 |
Blondle, S. E. and Houghten, R. A., Design of model amphipathic peptides having potent antimicrobial activities. Biochemistry, 31, 12688-12694 (1992)
DOI
ScienceOn
|
12 |
Benaroudj, N., Lee, D. H., and Goldberg, A. L., Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen redicals. J. Biol. Chem., 276, 24261-24267 (2001)
DOI
ScienceOn
|
13 |
Yahara, S., Shigeyama, C., Ura, T., Wakamatsu, K., Yasuhara, T., and Nohara, T., Cyclic peptides, acyclic diterpene glycoside and other compounds from Lycium chinense Mill. Chem. Pharm. Bull., 41, 703-709 (1993)
DOI
ScienceOn
|
14 |
Mclain, N., Ascaniom, R., Baker, C., Strohaver, R. A., and Dolan, J. W., Undeclenic acid inhibits morphogenesis of Candida albicans. Antimicrob. Agents Chemothr., 44, 2873-2875 (2000)
DOI
ScienceOn
|
15 |
Funayama, S., Zhang, G.-R., Nozoe, S., and Kukoamine, B., A spermine alkaloid from Lycium chinense. Phytochemistry, 38, 1529-1531 (1995)
DOI
ScienceOn
|
16 |
Han, S.-H., Lee, H.-H., Lee, I.-S., Moon, Y-H., and Woo, E.-R., A new phenolic amide from Lycium chinense Miller. Arch. Pharm. Res., 25, 433-437 (2002)
DOI
ScienceOn
|
17 |
Sengupta, S., Jana, M. L., Sengupta, D., and Naskar, A. K., A note on the estimation of microbial glycosidase activities by dinitrosalicylic acid reagent. Appl. Microbiol. Biotechnol., 53, 732-735 (2000)
DOI
ScienceOn
|